Completeness in standard and differential approximation classes: Poly-(D)APX- and (D)PTAS-completeness
نویسندگان
چکیده
Several problems are known to be APX-, DAPX-, PTAS-, or Poly-APX-PB-complete under suitably defined approximation-preserving reductions. But, to our knowledge, no natural problem is known to be PTAS-complete and no problem at all is known to be Poly-APX-complete. On the other hand, DPTASand Poly-DAPX-completeness have not been studied until now. We first prove in this paper the existence of natural Poly-APXand Poly-DAPX-complete problems under the well known PTASreduction and under the DPTAS-reduction (defined in “G. Ausiello, C. Bazgan, M. Demange, and V. Th. Paschos, Completeness in differential approximation classes, MFCS’03”), respectively. Next, we deal with PTASand DPTAS-completeness. We introduce approximation preserving reductions, called FT and DFT, respectively, and prove that, under these new reductions, natural problems are PTAS-complete, or DPTAS-complete. Then, we deal with the existence of intermediate problems under our reductions and we partially answer this question showing that the existence of NPO-intermediate problems under Turing-reduction is a sufficient condition for the existence of intermediate problems under both FTand DFT-reductions. Finally, we show that is DAPX-complete under the DPTASreduction. This is the first DAPX-complete problem that is not simultaneously APX-complete.
منابع مشابه
Poly-APX- and PTAS-Completeness in Standard and Differential Approximation
We first prove the existence of natural Poly-APX-complete problems, for both standard and differential approximation paradigms, under already defined and studied suitable approximation preserving reductions. Next, we devise new approximation preserving reductions, called FT and DFT, respectively, and prove that, under these reductions, natural problems are PTAS-complete, always for both standar...
متن کاملCompleteness in Differential Approximation Classes
We study completeness in differential approximability classes. In differential approximation, the quality of an approximation algorithm is the measure of both how far is the solution computed from a worst one and how close is it to an optimal one. The main classes considered are DAPX, the differential counterpart of APX, including the NP optimization problems approximable in polynomial time wit...
متن کاملPTAS-completeness in standard and differential approximation (Preliminary version)
Nous nous plaçons dans le cadre de l’approximation polynomiale des problèmes d’optimisation. Les réductions préservant l’approximabilité ont permis de structurer les classes d’approximation classiques (APX, PTAS,...) en introduisant des notions de complétude. Par exemple, des problèmes naturels ont été montrés APXou DAPX-complets (pour le paradigme de l’approximation différentielle), sous des r...
متن کاملLaboratoire d’Analyse et Modélisation de Systèmes pour l’Aide à la Décision UMR CNRS 7024
This article focuses on polynomial approximation of optimization problems. The classical approximation classes (APX, PTAS,. . . ) have been structured by the introduction of approximation-preserving reductions and notions of completeness. For instance, natural problems are known to be APXor DAPX-complete (under the ∗ LAMSADE, Université Paris-Dauphine, 75775 Paris cedex 16, France. {bazgan,esco...
متن کاملCompleteness in approximation classes beyond APX
We present a reduction that allows us to establish completeness results for several approximation classes mainly beyond APX. Using it, we extend one of the basic results of S. Khanna, R. Motwani, M. Sudan, and U. Vazirani (On syntactic versus computational views of approximability, SIAM J. Comput., 28:164–191, 1998) by proving the existence of complete problems for the whole Log-APX, the class ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 339 شماره
صفحات -
تاریخ انتشار 2005