Convergence and asymptotic normality of variational Bayesian approximations for exponential family models with missing values

نویسنده

  • Bo Wang
چکیده

We study the properties of variational Bayes approximations for exponential family models with missing values. It is shown that the iterative algorithm for obtaining the variational Bayesian estimator converges locally to the true value with probability 1 as the sample size becomes indefinitely large. Moreover, the variational posterior distribution is proved to be asymptotically normal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence and Asymptotic Normality of Variational Bayesian Approximations for Expon

We study the properties of variational Bayes approximations for exponential family models with missing values. It is shown that the iterative algorithm for obtaining the variational Bayesian estimator converges locally to the true value with probability 1 as the sample size becomes indefinitely large. Moreover, the variational posterior distribution is proved to be asymptotically normal.

متن کامل

Location Reparameterization and Default Priors for Statistical Analysis

This paper develops default priors for Bayesian analysis that reproduce familiar frequentist and Bayesian analyses for models that are exponential or location. For the vector parameter case there is an information adjustment that avoids the Bayesian marginalization paradoxes and properly targets the prior on the parameter of interest thus adjusting for any complicating nonlinearity the details ...

متن کامل

Frequentist Consistency of Variational Bayes

A key challenge for modern Bayesian statistics is how to perform scalable inference of posterior distributions. To address this challenge, variational Bayes (vb) methods have emerged as a popular alternative to the classical Markov chain Monte Carlo (mcmc) methods. vb methods tend to be faster while achieving comparable predictive performance. However, there are few theoretical results around v...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Stochastic Variational Inference for Bayesian Sparse Gaussian Process Regression

This paper presents a novel variational inference framework for deriving a family of Bayesian sparse Gaussian process regression (SGPR) models whose approximations are variationally optimal with respect to the full-rank GPR model enriched with various corresponding correlation structures of the observation noises. Our variational Bayesian SGPR (VBSGPR) models jointly treat both the distribution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004