Vertically Aligned Carbon Nanotube Arrays Co-doped with Phosphorus and Nitrogen as Efficient Metal-Free Electrocatalysts for Oxygen Reduction.

نویسندگان

  • Dingshan Yu
  • Yuhua Xue
  • Liming Dai
چکیده

Using a mixture of ferrocene, pyridine, and triphenylphosphine as precursors for injection-assisted chemical vapor deposition (CVD), we prepared the first vertically aligned multiwalled carbon nanotube array co-doped with phosphorus (P) and nitrogen (N) with a relatively high P-doping level (designated as PN-ACNT). We have also demonstrated the potential applications of the resultant PN-ACNTs as high-performance electrocatalysts for the oxygen reduction reaction (ORR). PN-ACNT arrays were shown to exhibit a high ORR electrocatalytic activity, superb long-term durability, and good tolerance to methanol and carbon monoxide, significantly outperforming their counterparts doped with P (P-ACNT) or N (N-ACNT) only and even comparable to the commercially available Pt-C catalyst (45 wt % Pt on Vulcan XC-72R; E-TEK) due to a demonstrated synergetic effect arising from the co-doping of CNTs with both P and N.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.

The large-scale practical application of fuel cells will be difficult to realize if the expensive platinum-based electrocatalysts for oxygen reduction reactions (ORRs) cannot be replaced by other efficient, low-cost, and stable electrodes. Here, we report that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic...

متن کامل

Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by co-doping with boron and nitrogen.

The oxygen reduction reaction (ORR) is an important process in many fields, including energy conversion (fuel cells, metal–air batteries), corrosion, and biosensing. For fuel cells, the cathodic oxygen reduction is a major factor limiting their performance. The ORR can proceed either through a four-electron process to directly combine oxygen with electrons and protons into water as the end prod...

متن کامل

Preparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts

Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...

متن کامل

BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction.

The cathodic oxygen reduction reaction (ORR) is an important process in fuel cells and metal–air batteries. Although Pt-based electrocatalysts have been commonly used in commercial fuel cells owing to their relatively low overpotential and high current density, they still suffer from serious intermediate tolerance, anode crossover, sluggish kinetics, and poor stability in an electrochemical env...

متن کامل

Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions

Nitrogen-doped carbon materials, including nitrogen-doped carbon nanotubes (NCNTs) and nitrogen-doped graphene (NG), have attracted increasing attention for oxygen reduction reaction (ORR) in metal-air batteries and fuel cell applications, due to their optimal properties including excellent electronic conductivity, 4e transfer and superb mechanical properties. Here, the recent progress of NCNTs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 3 19  شماره 

صفحات  -

تاریخ انتشار 2012