Getting ready for host invasion: elevated expression and action of xyloglucan endotransglucosylases/hydrolases in developing haustoria of the holoparasitic angiosperm Cuscuta
نویسندگان
چکیده
Changes in cell walls have been previously observed in the mature infection organ, or haustorium, of the parasitic angiosperm Cuscuta, but are not equally well charted in young haustoria. In this study, we focused on the molecular processes in the early stages of developing haustoria; that is, before the parasite engages in a physiological contact with its host. We describe first the identification of differentially expressed genes in young haustoria whose development was induced by far-red light and tactile stimuli in the absence of a host plant by suppression subtractive hybridization. To improve sequence information and to aid in the identification of the obtained candidates, reference transcriptomes derived from two species of Cuscuta, C. gronovii and C. reflexa, were generated. Subsequent quantitative gene expression analysis with different tissues of C. reflexa revealed that among the genes that were up-regulated in young haustoria, two xyloglucan endotransglucosylase/hydrolase (XTH) genes were highly expressed almost exclusively at the onset of haustorium development. The same expression pattern was also found for the closest XTH homologues from C. gronovii. In situ assays for XTH-specific action suggested that xyloglucan endotransglucosylation was most pronounced in the cell walls of the swelling area of the haustorium facing the host plant, but was also detectable in later stages of haustoriogenesis. We propose that xyloglucan remodelling by Cuscuta XTHs prepares the parasite for host infection and possibly aids the invasive growth of the haustorium.
منابع مشابه
Activity of xyloglucan endotransglucosylases/hydrolases suggests a role during host invasion by the parasitic plant Cuscuta reflexa
The parasitic vines of the genus Cuscuta form haustoria that grow into other plants and connect with their vascular system, thus allowing the parasite to feed on its host. A major obstacle that meets the infection organ as it penetrates the host tissue is the rigid plant cell wall. In the present study, we examined the activity of xyloglucan endotransglucosylases/hydrolases (XTHs) during the ho...
متن کاملParasitic Cuscuta factor(s) and the detection by tomato initiates plant defense
Dodders (Cuscuta spp.) are holoparasitic plants that enwind stems of host plants and penetrate those by haustoria to connect to the vascular bundles. Having a broad host plant spectrum, Cuscuta spp infect nearly all dicot plants - only cultivated tomato as one exception is mounting an active defense specifically against C. reflexa. In a recent work we identified a pattern recognition receptor o...
متن کاملMolecular Modelling of Family GH16 Glycoside Hydrolases: Potential Roles for Xyloglucan Endotransglucosylases/Hydrolases in Cell Wall Modification in the Poaceae
متن کامل
The Parasitic Plant Cuscuta australis Is Highly Insensitive to Abscisic Acid-Induced Suppression of Hypocotyl Elongation and Seed Germination
Around 1% of angiosperms are parasitic plants. Their growth and development solely or partly depend on host plants from which they extract water, nutrients, and other molecules using a parasitic plant-specific organ, the haustorium. Strong depletion of nutrients can result in serious growth retardation and in some cases, death of the hosts. The genus Cuscuta (dodder) comprises about 200 holopar...
متن کاملEnhancement of Soluble Expression and Biochemical Characterization of Two Epoxide Hydrolases from Bacillus
Background: Enantiopure epoxides are important intermediates in the synthesis of high-value chiral chemicals. Epoxide hydrolases have been exploited in biocatalysis for kinetic resolution of racemic epoxides to produce enantiopure epoxides and vicinal diols. It is necessary to obtain sufficient stable epoxide hydrolases with high enantioselectivity to meet the requirements of i...
متن کامل