Origin and Evolution of RNA-Dependent RNA Polymerase
نویسندگان
چکیده
RNA-dependent RNA polymerases (RdRp) are very ancient enzymes and are essential for all viruses with RNA genomes. We reconstruct the origin and evolution of this polymerase since the initial stages of the origin of life. The origin of the RdRp was traced back from tRNA ancestors. At the origin of the RdRp the most ancient part of the protein is the cofactor-binding site that had the capacity of binding to simple molecules as magnesium, calcium, and ribonucleotides. Our results suggest that RdRp originated from junctions of proto-tRNAs that worked as the first genes at the emergence of the primitive translation system, where the RNA was the informational molecule. The initial domain, worked as a building block for the emergence of the fingers and thumb domains. From the ancestral RdRp, we could establish the evolutionary stages of viral evolution from a rooted ancestor to modern viruses. It was observed that the selective pressure under the RdRp was the organization and functioning of the genome, where RNA double-stranded and RNA single-stranded virus formed a separate group. We propose an evolutionary route to the polymerases and the results suggest an ancient scenario for the origin of RNA viruses.
منابع مشابه
Enhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase
Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...
متن کاملAncient Origin and Recent Innovations of RNA Polymerase IV and V
Small RNA-mediated chromatin modification is a conserved feature of eukaryotes. In flowering plants, the short interfering (si)RNAs that direct transcriptional silencing are abundant and subfunctionalization has led to specialized machinery responsible for synthesis and action of these small RNAs. In particular, plants possess polymerase (Pol) IV and Pol V, multi-subunit homologs of the canonic...
متن کاملResidue profile in predivergence sequences as a guide to the origin of DNA replication
DNA dependent RNA polymerase core subunits abb' conserved residues at frequencies most closely matched with codons at stage 10.4-11.1 in code evolution. An excess of acidic residues (stage 2 additions) lowered this estimate, but not by more than 2.3 stages. With 1 tryptophan (stage 14 addition) in 529 conserved residues, abb' significantly under-represented this amino acid, consistent with a cu...
متن کاملThe challenge of getting a high quality of RNA from oocyte for gene expression study
The extraction of intact RNA from oocyte is quite challenging and time-consuming. A standard protocol using commercial RNA extraction kit, yields a low quantity of RNA in oocytes. In the past, several attempts in getting RNA for gene expression study ended up with a few different modified methods. Extraction of high-quality RNA from oocyte is important before further downstream analyses such as...
متن کاملAncient origin, functional conservation and fast evolution of DNA-dependent RNA polymerase III
RNA polymerase III contains seventeen subunits in yeasts (Saccharomyces cerevisiae and Schizosaccharomyces pombe) and in human cells. Twelve of them are akin to the core RNA polymerase I or II. The five other are RNA polymerase III-specific and form the functionally distinct groups Rpc31-Rpc34-Rpc82 and Rpc37-Rpc53. Currently sequenced eukaryotic genomes revealed significant homology to these s...
متن کامل