Red blood cell phase separation in symmetric and asymmetric microchannel networks: effect of capillary dilation and inflow velocity

نویسندگان

  • Francesco Clavica
  • Alexandra Homsy
  • Laure Jeandupeux
  • Dominik Obrist
چکیده

The non-uniform partitioning or phase separation of red blood cells (RBCs) at a diverging bifurcation of a microvascular network is responsible for RBC heterogeneity within the network. The mechanisms controlling RBC heterogeneity are not yet fully understood and there is a need to improve the basic understanding of the phase separation phenomenon. In this context, in vitro experiments can fill the gap between existing in vivo and in silico models as they provide better controllability than in vivo experiments without mathematical idealizations or simplifications inherent to in silico models. In this study, we fabricated simple models of symmetric/asymmetric microvascular networks; we provided quantitative data on the RBC velocity, line density and flux in the daughter branches. In general our results confirmed the tendency of RBCs to enter the daughter branch with higher flow rate (Zweifach-Fung effect); in some cases even inversion of the Zweifach-Fung effect was observed. We showed for the first time a reduction of the Zweifach-Fung effect with increasing flow rate. Moreover capillary dilation was shown to cause an increase of RBC line density and RBC residence time within the dilated capillary underlining the possible role of pericytes in regulating the oxygen supply.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematical Analysis of MHD Flow of Blood in Very Narrow Capillaries (RESEARCH NOTE)

A mathematical model for blood flow in narrow capillaries under the effect of transverse magnetic field has been investigated. It is assumed that there is a lubricating layer between red blood cells and tube wall. The transient flow of the fit red blood cell surrounded by plasma annulus in the narrow capillary is considered. The analysis of fluid flow between red cell and tube wall, when the ce...

متن کامل

A Biomechanical Approach for the Study of Deformation of Red Cells in Narrow Capillaries

This model focuses on the behavior of capillary-tissue fluid exchange system when the diameter of the capillary is less than that of red cell. In vivo and in vitro observations indicate that the width of the gap between the red cell and the vessel wall is generally small compared to the radius of the capillary for a single file flow of red cell in narrow vessel, particularly if the vessel diame...

متن کامل

Blood flow in microvascular networks. Experiments and simulation.

A theoretical model has been developed to simulate blood flow through large microcirculatory networks. The model takes into account the dependence of apparent viscosity of blood on vessel diameter and hematocrit (the Fahraeus-Lindqvist effect), the reduction of intravascular hematocrit relative to the inflow hematocrit of a vessel (the Fahraeus effect), and the disproportionate distribution of ...

متن کامل

Arterial Blood Flow Blockage Time Due to an Interaction between a Foreign Second Phase and an Externally Originated Particle

A huge number of deaths in the world are the direct or indirect consequence of a disease which is called atherosclerosis. The disease could be due to an artery blockage by the interaction of an externally second phase with a particle which is entered to the bloodstream. The effect of some most important physical and geometrical affecting parameters on the blockage time of a microchannel due to ...

متن کامل

EFFECTS OF MAGNETIC FIELD ON THE RED CELL ON NUTRITIONAL TRANSPORT IN CAPILLARY-TISSUE EXCHANGE SYSTEM

A mathematical model for nutritional transport in capillary tissues exchange system in thepresence of magnetic field has been studied. In this case, the cell is deformed. Due to concentrationgradients, the dissolved nutrient in substrate diffuses into surrounding tissue. Theanalytical method is based on perturbation technique while the numerical simulation is basedon finite difference scheme. R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016