A Generalization of Lyapounov's Convexity Theorem to Measures with Atoms
نویسنده
چکیده
The distance from the convex hull of the range of an n-dimensional vector-valued measure to the range of that measure is no more than an/2, where a is the largest (one-dimensional) mass of the atoms of the measure. The case a = 0 yields Lyapounov's Convexity Theorem; applications are given to the bisection problem and to the bang-bang principle of optimal control theory.
منابع مشابه
On a Generalization of Lyapounov's Theorem
We provide a simpler proof of Gouweleeuw’s theorem about the convexity of the range of an R-valued vector measure Fin terms of $. We also discuss possible extensions of Gouweleeuw’s results to vector measures with values in infinite-dimensional vector spaces and to unbounded vector measures.
متن کاملExistence of solutions of infinite systems of integral equations in the Frechet spaces
In this paper we apply the technique of measures of noncompactness to the theory of infinite system of integral equations in the Fr´echet spaces. Our aim is to provide a few generalization of Tychonoff fixed point theorem and prove the existence of solutions for infinite systems of nonlinear integral equations with help of the technique of measures of noncompactness and a generalization of Tych...
متن کاملSOME PROPERTIES FOR FUZZY CHANCE CONSTRAINED PROGRAMMING
Convexity theory and duality theory are important issues in math- ematical programming. Within the framework of credibility theory, this paper rst introduces the concept of convex fuzzy variables and some basic criteria. Furthermore, a convexity theorem for fuzzy chance constrained programming is proved by adding some convexity conditions on the objective and constraint functions. Finally,...
متن کاملThe starlikeness, convexity, covering theorem and extreme points of p-harmonic mappings
The main aim of this paper is to introduce three classes $H^0_{p,q}$, $H^1_{p,q}$ and $TH^*_p$ of $p$-harmonic mappings and discuss the properties of mappings in these classes. First, we discuss the starlikeness and convexity of mappings in $H^0_{p,q}$ and $H^1_{p,q}$. Then establish the covering theorem for mappings in $H^1_{p,q}$. Finally, we determine the extreme points of the class $TH^*_{p}$.
متن کاملA generalization of Martindale's theorem to $(alpha, beta)-$homomorphism
Martindale proved that under some conditions every multiplicative isomorphism between two rings is additive. In this paper, we extend this theorem to a larger class of mappings and conclude that every multiplicative $(alpha, beta)-$derivation is additive.
متن کامل