Contributions of mesozooplankton to vertical carbon export in a coastal upwelling system
نویسندگان
چکیده
Mesozooplankton can directly impact global biogeochemical cycles by repackaging particulate organic carbon (POC) into dense, rapidly sinking fecal pellets and by undertaking vertical migrations that transport carbon and nutrients to depth. We assessed these contributions of mesozooplankton to vertical flux in the California Current Ecosystem, a productive but spatiotemporally variable coastal upwelling system, during cruises in April 2007 and October 2008. Sediment traps and Thorium-234 (234Th) disequilibrium measurements were used to assess the total passive flux of sinking POC, while pigment analyses and microscopic enumeration of sediment trap samples provided estimates of total fecal carbon transport. Identification of mesozooplankton in paired day-night, vertically stratified plankton tows allowed calculation of the active transport of carbon by the dominant taxa of vertically migrating mesozooplankton (particularly copepods and euphausiids). Across the range of 9 ecosystem conditions encountered on the cruises, recognizable fecal pellet mass flux varied from 3.5 to 135 mg C m−2 d−1 (3 to 94% of total passive flux) at the 100 m depth horizon. The active transport of carbon by migratory mesozooplankton taxa contributed an additional 2.4 to 47.1 mg C m−2 d−1 (1.9 to 40.5% of total passive flux). Inter-cruise comparisons suggest that fecal pellets contributed a higher portion of passive export during the productive spring cruise, when fecal material may have been responsible for close to 100% of sinking material. During the fall cruise, a gradient was observed with carbon export in productive water parcels driven by a large contribution of fecal pellets. In the less productive regions, fall vertical fluxes contained a higher proportion of marine snow and unidentifiable particles.
منابع مشابه
Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction.
Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from 238U:234Th disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg C⋅...
متن کاملShort-term meso-scale variability of mesozooplankton communities in a coastal upwelling
31 32 Abstract The short-term, meso-scale variability of the mesozooplankton community present in the coastal upwelling system of the Ría de Vigo (NW Spain) has been analysed. Three well-defined communities were identified: coastal, frontal and oceanic, according to their holoplankton-meroplankton ratio, richness, and total abundance. These communities changed from summer to autumn due to a shi...
متن کاملPlankton trophic structure and particulate organic carbon production during a coastal downwelling-upwelling cycle
We evaluated plankton trophic structure in a short-term temporal survey performed throughout a downwelling–upwelling cycle at the SE Brazilian coast. Size-fractioned phytoplankton biomass (PB), microzooplankton (MiZA) and mesozooplankton (MeZA) abundances along with primary (PP) and bacterial production (BP) were estimated for 5 consecutive days at a fixed station in the Cabo Frio upwelling cor...
متن کاملAnnual cyclicity in export efficiency in the inner Southern California Bight
The balance of marine autotrophy and heterotrophy regulates the ocean’s ability to serve as a CO2 sink, as organic material produced by autotrophs sinks into the ocean interior to drive the biological pump. Marine ecosystems over the continental margins, especially coastal upwelling regions, account for a disproportionate amount of carbon export; thus, even small fluctuations in export in these...
متن کاملThe biological pump in the Costa Rica Dome: an open-ocean upwelling system with high new production and low export.
The Costa Rica Dome is a picophytoplankton-dominated, open-ocean upwelling system in the Eastern Tropical Pacific that overlies the ocean's largest oxygen minimum zone. To investigate the efficiency of the biological pump in this unique area, we used shallow (90-150 m) drifting sediment traps and 234Th:238U deficiency measurements to determine export fluxes of carbon, nitrogen and phosphorus in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015