Structural and kinetic characterization of a maize aldose reductase.
نویسندگان
چکیده
The aldo-keto reductases (AKRs) are classified as oxidoreductases and are found in organisms from prokaryotes to eukaryotes. The AKR superfamily consists of more than 120 proteins that are distributed throughout 14 families. Very few plant AKRs have been characterized and their biological functions remain largely unknown. Previous work suggests that AKRs may participate in stress tolerance by detoxifying reactive aldehyde species. In maize endosperm, the presence of an aldose reductase (AR; EC 1.1.1.21) enzyme has also been hypothesized based on the extensive metabolism of sorbitol. This manuscript identifies and characterizes an AKR from maize (Zea mays L.) with features of an AR. The cDNA clone, classified as AKR4C7, was expressed as a recombinant His-tag fusion protein in Escherichia coli. The product was purified by immobilized metal affinity chromatography followed by anion exchange chromatography. Circular dichroism spectrometry and SAXS analysis indicated that the AKR4C7 protein was stable, remained folded throughout the purification process, and formed monomers of a globular shape, with a molecular envelope similar to human AR. Maize AKR4C7 could utilize dl-glyceraldehyde and some pentoses as substrates. Although the maize AKR4C7 was able to convert sorbitol to glucose, the low affinity for this substrate indicated that AKR4C7 was probably a minimal contributor to sorbitol metabolism in maize seeds. Polyclonal antisera raised against AKR4C7 recognized at least three AR-like polypeptides in maize kernels, consistent with the presence of a small gene family. Diverse functions may have evolved for maize AKRs in association with specific physiological requirements of kernel development.
منابع مشابه
Synthesis and docking analysis of new heterocyclic system of tetrazolo[5',1':2,3][1,3,4]thiadiazepino [7,6-b]quinolines as aldose reductase inhibitors
Objective(s):In recent years, the chemistry of Tetrazolo[5',1':2,3][1,3,4]thiadiazepino [7,6-b]quinolines have received considerable attention owing to their synthetic and effective biological importance which exhibits a wide variety of biological activity. As the inhibitor of aldose reductase, the aforementioned compounds may have implication in preventing complications of diabetes. Materials...
متن کاملMelatonin Reduces Cataract Formation and Aldose Reductase Activity in Lenses of Streptozotocin-induced Diabetic Rat
Background: The relationship between the high activity of aldose reductase (AR) and diabetic cataract formation has been previously investigated. The purpose of the present study was to determine the preventing effect of melatonin on streptozotocin (STZ)-induced diabetic cataract in rats.Methods: 34 adult healthy male Sprague-Dawely rats were divided into four groups. Diabetic control and diabe...
متن کاملAldose reductase activation is a key component of myocardial response to ischemia.
Aldose reductase, a member of the aldo-keto reductase family, has been implicated in the development of vascular and neurological complications in diabetes. Despite recent studies from our laboratory demonstrating protection of ischemic hearts by an aldose reductase inhibitor, the presence and influence of aldose reductase in cardiac tissue remain unknown. Our goal in this study was to isolate ...
متن کاملAldose reductase from human skeletal and heart muscle. Interconvertible forms related by thiol-disulfide exchange.
Aldose reductase was purified from human skeletal and heart muscle by a rapid and efficient scheme involving Red Sepharose chromatography, chromatofocusing on Pharmacia PBE 94, and hydroxylapatite high pressure liquid chromatography. The scheme afforded homogeneous enzyme, 65% recovery, in 2 days. All muscle samples express aldose reductase but not the closely related aldehyde reductase. Aldose...
متن کاملEffective fraction of Teucrium polium suppressed polyol pathway through inhibiting the aldose reductase enzyme: strategy to reduce retinopathy
Background: Several metabolic pathways are involved in the complications of diabetes like polyol pathway. Aldose reductase (AR) is a key enzyme in the polyol pathway, which catalyzes the conversion of glucose to sorbitol. AR inhibitors are appropriate to prevent and treat the diabetes complications. Objective: This study was designed to investigate the effect of different fractions of Teucrium ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology and biochemistry : PPB
دوره 47 2 شماره
صفحات -
تاریخ انتشار 2009