Pulmonary vascular wall stiffness: An important contributor to the increased right ventricular afterload with pulmonary hypertension

نویسندگان

  • Zhijie Wang
  • Naomi C. Chesler
چکیده

Pulmonary hypertension (PH) is associated with structural and mechanical changes in the pulmonary vascular bed that increase right ventricular (RV) afterload. These changes, characterized by narrowing and stiffening, occur in both proximal and distal pulmonary arteries (PAs). An important consequence of arterial narrowing is increased pulmonary vascular resistance (PVR). Arterial stiffening, which can occur in both the proximal and distal pulmonary arteries, is an important index of disease progression and is a significant contributor to increased RV afterload in PH. In particular, arterial narrowing and stiffening increase the RV afterload by increasing steady and oscillatory RV work, respectively. Here we review the current state of knowledge of the causes and consequences of pulmonary arterial stiffening in PH and its impact on RV function. We review direct and indirect techniques for measuring proximal and distal pulmonary arterial stiffness, measures of arterial stiffness including elastic modulus, incremental elastic modulus, stiffness coefficient β and others, the changes in cellular function and the extracellular matrix proteins that contribute to pulmonary arterial stiffening, the consequences of PA stiffening for RV function and the clinical implications of pulmonary vascular stiffening for PH progression. Future investigation of the relationship between PA stiffening and RV dysfunction may facilitate new therapies aimed at improving RV function and thus ultimately reducing mortality in PH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pulmonary vascular mechanics: important contributors to the increased right ventricular afterload of pulmonary hypertension.

Chronic hypoxia causes pulmonary vasoconstriction and vascular remodelling, which lead to hypoxic pulmonary hypertension (HPH). Hypoxic pulmonary hypertension is associated with living at high altitudes and is a complication of many lung diseases, including chronic obstructive pulmonary disease, cystic fibrosis and obstructive sleep apnoea. Pulmonary vascular changes that occur with HPH include...

متن کامل

Effect of thoracic epidural blockade on hypoxia-induced pulmonary arterial hypertension in rats

Objective(s): The present study was aimed to investigate the influence of thoracic epidural blockade on hypoxia-induced pulmonary hypertension in rats. Materials and Methods: Forty eight Wistar rats were randomly divided into 4 equal groups, named normoxia hypoxia hypoxia/ ropivacaine and hypoxia/saline. Animals were placed in a hypoxia chamber and instrumented with epidural catheters at the t...

متن کامل

Renal Denervation Reduces Pulmonary Vascular Remodeling and Right Ventricular Diastolic Stiffness in Experimental Pulmonary Hypertension

Neurohormonal overactivation plays an important role in pulmonary hypertension (PH). In this context, renal denervation, which aims to inhibit the neurohormonal systems, may be a promising adjunct therapy in PH. In this proof-of-concept study, we have demonstrated in 2 experimental models of PH that renal denervation delayed disease progression, reduced pulmonary vascular remodeling, lowered ri...

متن کامل

Influence of Distal Resistance and Proximal Stiffness on Hemodynamics and RV Afterload in Progression and Treatments of Pulmonary Hypertension: A Computational Study with Validation Using Animal Models

We develop a simple computational model based on measurements from a hypoxic neonatal calf model of pulmonary hypertension (PH) to investigate the interplay between vascular and ventricular measures in the setting of progressive PH. Model parameters were obtained directly from in vivo and ex vivo measurements of neonatal calves. Seventeen sets of model-predicted impedance and mean pulmonary art...

متن کامل

Pathogenic Role of Store-Operated and Receptor-Operated Ca2+ Channels in Pulmonary Arterial Hypertension

Pulmonary circulation is an important circulatory system in which the body brings in oxygen. Pulmonary arterial hypertension (PAH) is a progressive and fatal disease that predominantly affects women. Sustained pulmonary vasoconstriction, excessive pulmonary vascular remodeling, in situ thrombosis, and increased pulmonary vascular stiffness are the major causes for the elevated pulmonary vascula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2011