Supervisory Control for Turnover Prevention of a Teleoperated Mobile Agent with a Terrain-Prediction Sensor Module
نویسندگان
چکیده
Teleoperated mobile agents (or vehicles) play an important role especially in hazardous environments such as inspecting underwater structures (Lin, 1997), demining (Smith, 1992), and cleaning nuclear plants (Kim, 2002). A teleoperated agent is, in principle, maneuvered by an operator at a remote site, but should be able to react autonomously to avoid dangerous situations such as collisions with obstacles and turnovers. Many studies have been conducted on collision avoidance of mobile agents (Borenstein, 1989; Borenstein, 1991a; Borenstein, 1991b; Howard, 2001; Niwa, 2004; Singh et al., 2000). In this research, however, we will focus on turnover prevention of mobile agents moving on uneven terrain because a turnover can cause more fatal damage to the agents. Here, we adopt the term ‘turnover’ as a concept which includes not only a rollover but also a pitchover. Extensive studies have been conducted on motion planning problems of mobile agents traveling over sloped terrain in the robotics research community (Shiller, 1991). Shiller presented optimal motion planning for an autonomous car-like vehicle without a slip and a rollover. The terrain was represented by a B-spline patch and the vehicle path was represented by a B-spline curve, where the terrain and vehicle path were given in advance. With the models of the terrain and the path, the translational velocity limit of the vehicle was determined to avoid a slip and a rollover. Also, many studies have been conducted on rollover prevention of heavy vehicles like trucks and sports utility vehicles in the vehicular research community. Takano analyzed various dynamic outputs of large vehicles, such as the lateral acceleration, yaw rate, roll angle, and roll rate, in the frequency domain for predicting rollovers (Takano, 2001). Chen developed the time-torollover (TTR)-based rollover threat index in order to predict rollovers of sports utility vehicles (Chen, 1999). This intuitive measure TTR was computed from the simple model and then corrected by using an artificial neural network. Nalecz et al. suggested an energy-based function called the rollover prevention energy reserve (RPER) (Nalecz, 1987; Nalecz, 1991; Nalecz, 1993). RPER is the difference between the energy needed to bring the vehicle to its rollover position and the rotational kinetic energy, which can be transferred into the gravitational potential energy to lift the vehicle. RPER is positive for
منابع مشابه
Collision and Turnover Avoidance of Mobile Robots with Force Reflection
Collision and turnover are fatal to mobile robots. Control methods are suggested for solving the fatal problems of mobile robots maneuvered by an operator. Speed reduction and wall following are applied for collision avoidance using ultrasonic sensor data. Modified Hough transform is suggested to obtain a wall model from sonar data overcoming limitations of ultrasonic sensors. The robot is also...
متن کاملA Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks
Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...
متن کاملCooperative Control of Mobile Robots in Creating a Runway Platform for Quadrotor Landing
Multi-agent systems are systems in which several agents accomplish a mission in a cooperative manner. In this paper, a novel idea for the construction of a movable runway platform based on multi-agent systems is presented. It is assumed that an aerial agent (quadrotor) decides to make an emergency landing due to reasons such as a decrease in energy level or technical failure, while there is no ...
متن کاملA neuro-fuzzy approach to vehicular traffic flow prediction for a metropolis in a developing country
Short-term prediction of traffic flow is central to alleviating congestion and controlling the negative impacts of environmental pollution resulting from vehicle emissions on both inter- and intra-urban highways. The strong need to monitor and control congestion time and costs for metropolis in developing countries has therefore motivated the current study. This paper establishes the applicatio...
متن کاملMulti-robot Formation Control and Terrain Servoing with Limited Sensor Information
In this paper mobile multi-agent systems with limited sensor information are studied. Two control algorithms are proposed that do not require global information, and are easy to implement. The control problems are motivated by robotic applications such as cleaning, grass mowing and land mines detection, where a common control problem is the complete coverage path planning, for which it is known...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012