Lateral Connections in Denoising Autoencoders Support Supervised Learning
نویسندگان
چکیده
We show how a deep denoising autoencoder with lateral connections can be used as an auxiliary unsupervised learning task to support supervised learning. The proposed model is trained to minimize simultaneously the sum of supervised and unsupervised cost functions by back-propagation, avoiding the need for layerwise pretraining. It improves the state of the art significantly in the permutationinvariant MNIST classification task.
منابع مشابه
Semi-Supervised Learning of the Electronic Health Record with Denoising Autoencoders for Phenotype Stratification
Patient interactions with health care providers result in entries to electronic health records (EHRs). EHRs were built for clinical and billing purposes but contain many data points about an individual. Mining these records provides opportunities to extract electronic phenotypes that can be paired with genetic data to identify genes underlying common human diseases. This task remains challengin...
متن کاملScheduled denoising autoencoders
We present a representation learning method that learns features at multiple different levels of scale. Working within the unsupervised framework of denoising autoencoders, we observe that when the input is heavily corrupted during training, the network tends to learn coarse-grained features, whereas when the input is only slightly corrupted, the network tends to learn fine-grained features. Th...
متن کاملDeconstructing the Ladder Network Architecture
The manual labeling of data is and will remain a costly endeavor. For this reason, semi-supervised learning remains a topic of practical importance. The recently proposed Ladder Network is one such approach that has proven to be very successful. In addition to the supervised objective, the Ladder Network also adds an unsupervised objective corresponding to the reconstruction costs of a stack of...
متن کاملFeature Transfer Learning for Speech Emotion Recognition
Speech Emotion Recognition (SER) has achieved some substantial progress in the past few decades since the dawn of emotion and speech research. In many aspects, various research efforts have been made in an attempt to achieve human-like emotion recognition performance in real-life settings. However, with the availability of speech data obtained from different devices and varied acquisition condi...
متن کاملSemi-supervised learning of the electronic health record for phenotype stratification
Patient interactions with health care providers result in entries to electronic health records (EHRs). EHRs were built for clinical and billing purposes but contain many data points about an individual. Mining these records provides opportunities to extract electronic phenotypes, which can be paired with genetic data to identify genes underlying common human diseases. This task remains challeng...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1504.08215 شماره
صفحات -
تاریخ انتشار 2015