Membrane Transporters and Pharmacological Implications
نویسندگان
چکیده
Membrane transporters serve to move chemicals in and out of the cells according to metabolic needs or the presence of toxic compounds. These processes are mediated by facilitated diffusion or active transport through the lipid bilayer that is the cell membrane. There exist two main categories of membrane transporters, the more passive solute carrier transporters (SLCs) and the ATP binding cassette transporters (ABCs). SLCs allow for passage of ions, sugars, lipids, amino acids and other compounds down a gradient, contributing to a cell’s passive permeability for such compounds. ABCs feature a highly conserved nucleotide binding domain (NBD) which contain peptide sequences responsible for ATP hydrolysis such as the Walker A and B motifs. ABCs utilize the energy stored in ATP to transport chemicals against their concentration and/or electrical gradient and consequently alter expected biological conditions. Transporters are now recognized as crucial barriers (e.g., efflux transporters) as well as possible delivery pathways to consider when designing new pharmaceutical agents as many traditional therapeutics are being recognized as transporter substrates [1–3]. Drug resistant tumors and the blood-brain barrier (BBB) for example have been shown to actively express efflux transporters preventing therapeutic agents from reaching clinically relevant intracellular concentrations and/or physiological targets in the brain [4–7].
منابع مشابه
Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations.
Drug transport in the central nervous system is highly regulated not only by the blood-brain and the blood-cerebrospinal fluid barriers but also in brain parenchyma. The novel localization of drug transporters in brain parenchyma cells, such as microglia and astrocytes, suggest a reconsideration of the present conceptualization of brain barriers as it relates to drug transport. That is, the cel...
متن کاملSLC6 neurotransmitter transporters: structure, function, and regulation.
The neurotransmitter transporters (NTTs) belonging to the solute carrier 6 (SLC6) gene family (also referred to as the neurotransmitter-sodium-symporter family or Na(+)/Cl(-)-dependent transporters) comprise a group of nine sodium- and chloride-dependent plasma membrane transporters for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino ...
متن کاملDrug Transporters and Na+/H+ Exchange Regulatory Factor PSD-95/Drosophila Discs Large/ZO-1 Proteins.
Drug transporters govern the absorption, distribution, and elimination of pharmacologically active compounds. Members of the solute carrier and ATP binding-cassette drug transporter family mediate cellular drug uptake and efflux processes, thereby coordinating the vectorial movement of drugs across epithelial barriers. To exert their physiologic and pharmacological function in polarized epithel...
متن کاملOrganic anion transporters and their implications in pharmacotherapy.
Organic anion transporters play an essential role in the distribution and excretion of numerous endogenous metabolic products and exogenous organic anions, including a host of widely prescribed drugs. The expression and activity of these transporters is influenced by several conditions, including transcriptional regulation, gender-dependent regulation, and genetic variation. In addition, the in...
متن کاملRegulation of the Dopamine and Vesicular Monoamine Transporters: Pharmacological Targets and Implications for Disease.
Dopamine (DA) plays a well recognized role in a variety of physiologic functions such as movement, cognition, mood, and reward. Consequently, many human disorders are due, in part, to dysfunctional dopaminergic systems, including Parkinson's disease, attention deficit hyperactivity disorder, and substance abuse. Drugs that modify the DA system are clinically effective in treating symptoms of th...
متن کامل