Online learning vector quantization: a harmonic competition approach based on conservation network
نویسندگان
چکیده
This paper presents a self-creating neural network in which a conservation principle is incorporated with the competitive learning algorithm to harmonize equi-probable and equi-distortion criteria. Each node is associated with a measure of vitality which is updated after each input presentation. The total amount of vitality in the network at any time is 1, hence the name conservation. Competitive learning based on a vitality conservation principle is near-optimum, in the sense that problem of trapping in a local minimum is alleviated by adding perturbations to the learning rate during node generation processes. Combined with a procedure that redistributes the learning rate variables after generation and removal of nodes, the competitive conservation strategy provides a novel approach to the problem of harmonizing equi-error and equi-probable criteria. The training process is smooth and incremental, it not only achieves the biologically plausible learning property, but also facilitates systematic derivations for training parameters. Comparison studies on learning vector quantization involving stationary and nonstationary, structured and nonstructured inputs demonstrate that the proposed network outperforms other competitive networks in terms of quantization error, learning speed, and codeword search efficiency.
منابع مشابه
Rapid Online Learning of Objects in a Biologically Motivated Recognition Architecture
We present an approach for the supervised online learning of object representations based on a biologically motivated architecture of visual processing. We use the output of a recently developed topographical feature hierarchy to provide a view-based representation of threedimensional objects using a dynamical vector quantization approach. For a simple short-term object memory model we demonstr...
متن کاملExtensions of vector quantization for incremental clustering
In this paper, we extend the conventional vector quantization by incorporating a vigilance parameter, which steers the tradeoff between plasticity and stability during incremental online learning. This is motivated in the adaptive resonance theory (ART) network approach and is exploited in our paper for forming a one-pass incremental and evolving variant of vector quantization. This variant can...
متن کاملStatistical Mechanics of On-line Learning
We introduce and discuss the application of statistical physics concepts in the context of on-line machine learning processes. The consideration of typical properties of very large systems allows to perfom averages over the randomness contained in the sequence of training data. It yields an exact mathematical description of the training dynamics in model scenarios. We present the basic concepts...
متن کاملInteractive and life-long learning for identification and categorization tasks
The presented thesis focuses on life-long and interactive learning for identification and categorization tasks. The fundamental and still largely unsolved problem of life-long learning with artificial neural networks is the so-called “stability-plasticity dilemma”. To achieve plasticity the learning approach must be able to continuously integrate newly acquired knowledge into its internal repre...
متن کاملHigh Impedance Fault Detection using LVQ Neural Networks
This paper presents a new method to detect high impedance faults in radial distribution systems. Magnitudes of third and fifth harmonic components of voltages and currents are used as a feature vector for fault discrimination. The proposed methodology uses a learning vector quantization (LVQ) neural network as a classifier for identifying high impedance arc-type faults. The network learns from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
دوره 29 5 شماره
صفحات -
تاریخ انتشار 1999