Tunable Spin-orbit Coupling and Quantum Phase Transition in a Trapped Bose-Einstein Condensate

نویسندگان

  • Yongping Zhang
  • Gang Chen
  • Chuanwei Zhang
چکیده

Spin-orbit coupling (SOC), the intrinsic interaction between a particle spin and its motion, is responsible for various important phenomena, ranging from atomic fine structure to topological condensed matter physics. The recent experimental breakthrough on the realization of SOC for ultra-cold atoms provides a completely new platform for exploring spin-orbit coupled superfluid physics. However, the SOC strength in the experiment is not tunable. In this report, we propose a scheme for tuning the SOC strength through a fast and coherent modulation of the laser intensities. We show that the many-body interaction between atoms, together with the tunable SOC, can drive a quantum phase transition (QPT) from spin-balanced to spin-polarized ground states in a harmonic trapped Bose-Einstein condensate (BEC), which resembles the long-sought Dicke QPT. We characterize the QPT using the periods of collective oscillations of the BEC, which show pronounced peaks and damping around the quantum critical point.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spin and field squeezing in a spin-orbit coupled Bose-Einstein condensate

Recently, strong spin-orbit coupling with equal Rashba and Dresselhaus strength has been realized in neutral atomic Bose-Einstein condensates via a pair of Raman lasers. In this report, we investigate spin and field squeezing of the ground state in spin-orbit coupled Bose-Einstein condensate. By mapping the spin-orbit coupled BEC to the well-known quantum Dicke model, the Dicke type quantum pha...

متن کامل

Condensation transition of ultracold Bose gases with Rashba spin-orbit coupling.

We study the Bose-Einstein condensate phase transition of three-dimensional ultracold bosons with isotropic Rashba spin-orbit coupling. Investigating the structure of Ginzburg-Landau free energy as a function of the condensate density, we show, within the Bogoliubov approximation, that the condensate phase transition is first order with a jump in the condensate density. We calculate the transit...

متن کامل

Orbit-induced spin squeezing in a spin-orbit coupled Bose-Einstein condensate

In recent pioneer experiment, a strong spin-orbit coupling, with equal Rashba and Dresselhaus strengths, has been created in a trapped Bose-Einstein condensate. Moreover, many exotic superfluid phenomena induced by this strong spin-orbit coupling have been predicted. In this report, we show that this novel spin-orbit coupling has important applications in quantum metrology, such as spin squeezi...

متن کامل

Tunable spin-orbit coupling via strong driving in ultracold-atom systems.

Spin-orbit coupling is an essential ingredient in topological materials, conventional and quantum-gas-based alike. Engineered spin-orbit coupling in ultracold-atom systems-unique in their experimental control and measurement opportunities-provides a major opportunity to investigate and understand topological phenomena. Here we experimentally demonstrate and theoretically analyze a technique for...

متن کامل

Softening of roton and phonon modes in a Bose-Einstein condensate with spin-orbit coupling.

Roton-type excitations usually emerge from strong correlations or long-range interactions, as in superfluid helium or dipolar ultracold atoms. However, in a weakly short-range interacting quantum gas, the recently synthesized spin-orbit (SO) coupling can lead to various unconventional phases of superfluidity and give rise to an excitation spectrum of roton-maxon character. Using Bragg spectrosc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013