Fachbereich 3 Mathematik Finite Packings of Spheres Finite Packings of Spheres

نویسندگان

  • Ulrich Betke
  • Martin Henk
  • Gerhard Hess
چکیده

We show that the sausage conjecture of LL aszll o Fejes TT oth on nite sphere pack-ings is true in dimension 42 and above.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Densest local sphere-packing diversity. II. Application to three dimensions.

The densest local packings of N three-dimensional identical nonoverlapping spheres within a radius R(min)(N) of a fixed central sphere of the same size are obtained for selected values of N up to N=1054. In the predecessor to this paper [A. B. Hopkins, F. H. Stillinger, and S. Torquato, Phys. Rev. E 81, 041305 (2010)], we described our method for finding the putative densest packings of N spher...

متن کامل

Finite Packings of Spheres

We show that the sausage conjecture of László Fejes Tóth on finite sphere packings is true in dimension 42 and above.

متن کامل

Sphere packings in 3-space

In this paper we survey results on packings of congruent spheres in 3-dimensional spaces of constant curvature. The topics discussed are as follows: Hadwiger numbers of convex bodies and kissing numbers of spheres; Touching numbers of convex bodies; Newton numbers of convex bodies; One-sided Hadwiger and kissing numbers; Contact graphs of finite packings and the combinatorial Kepler problem; Is...

متن کامل

Sphere packings revisited

In this paper we survey most of the recent and often surprising results on packings of congruent spheres in d-dimensional spaces of constant curvature. The topics discussed are as follows: Hadwiger numbers of convex bodies and kissing numbers of spheres; Touching numbers of convex bodies; Newton numbers of convex bodies; One-sided Hadwiger and kissing numbers; Contact graphs of finite packings ...

متن کامل

Diagnosing hyperuniformity in two-dimensional, disordered, jammed packings of soft spheres.

Hyperuniformity characterizes a state of matter for which (scaled) density fluctuations diminish towards zero at the largest length scales. However, the task of determining whether or not an image of an experimental system is hyperuniform is experimentally challenging due to finite-resolution, noise, and sample-size effects that influence characterization measurements. Here we explore these iss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998