Random Hermite polynomials and Girsanov identities on the Wiener space

نویسنده

  • Nicolas Privault
چکیده

In this paper we derive a formula for the expectation of random Hermite polynomials in Skorohod integrals, extending classical results in the adapted case. As an application we recover, under simple conditions and with short proofs, the anticipative Girsanov identity and quasi-invariance results obtained in [6] for quasi-nilpotent shifts on the Wiener space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measure invariance on the Lie-Wiener path space

In this paper we extend some recent results on moment identities, Hermite polynomials, and measure invariance properties on the Wiener space, to the setting of path spaces over Lie groups. In particular we prove the measure invariance of transformations having a quasi-nilpotent covariant derivative via a Girsanov identity and an explicit formula for the expectation of Hermite polynomials in the...

متن کامل

Higher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$

Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...

متن کامل

On composition of generating functions

In this work we study numbers and polynomials generated by two type of composition of generating functions and get their explicit formulae. Furthermore we state an improvementof the composita formulae's given in [6] and [3], using the new composita formula's we construct a variety of combinatorics identities. This study go alone to dene new family of generalized Bernoulli polynomials which incl...

متن کامل

Holomorphic Sobolev Spaces, Hermite and Special Hermite Semigroups and a Paley-wiener Theorem for the Windowed Fourier Transform

The images of Hermite and Laguerre Sobolev spaces under the Hermite and special Hermite semigroups (respectively) are characterised. These are used to characterise the image of Schwartz class of rapidly decreasing functions f on Rn and Cn under these semigroups. The image of the space of tempered distributions is also considered and a Paley-Wiener theorem for windowed ( short-time) Fourier tran...

متن کامل

Application of Wiener-Hermite Expansion to Strong Plasma Turbulence

Expansion of a random function in terms of an orthogonal random base was introduced by Cameron and Martin [1] and Wiener [2], Meecham and Siegel [3] and Meecham and Jeng [4] applied this technique to the problem of hydrodynamic turbulence. Recently, Jahedi and Ahmadi [5] used it in their study of nonlinear structures subjected to random loads. The technique is now well known as the Wiener-Hermi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010