Origin of Contact Resistance at Ferromagnetic Metal-Graphene Interfaces.
نویسندگان
چکیده
Edge contact geometries are thought to yield ultralow contact resistances in most nonferromagnetic metal-graphene interfaces, owing to their large metal-graphene coupling strengths. Here, we examine the contact resistance of edge- versus surface-contacted ferromagnetic metal-graphene interfaces (i.e., nickel- and cobalt-graphene interfaces) using both single-layer and few-layer graphene. Good qualitative agreement is obtained between theory and experiment. In particular, in both theory and experiment, we observe that the contact resistance of edge-contacted ferromagnetic metal-graphene interfaces is much lower than that of surface-contacted ones, for all devices studied and especially for the single-layer graphene systems. We show that this difference in resistance is not due to differences in the metal-graphene coupling strength, which we quantify using Hamiltonian matrix elements. Instead, the larger contact resistance in surface contacts results from spin filtering at the interface, in contrast to the edge-contacted case where both spins are transmitted. Temperature-dependent resistance measurements beyond the Curie temperature TC show that the spin degree of freedom is indeed important for the experimentally measured contact resistance. These results show that it is possible to induce a large change in contact resistance by changing the temperature in the vicinity of TC.
منابع مشابه
Contact Resistance for “End-Contacted” Metal-Graphene and Metal-Nanotube Interfaces from Quantum Mechanics
In this paper, we predict the current-voltage (I-V) characteristics and contact resistance of “end-contacted” metal electrode-graphene and metal electrode-carbon nanotube (CNT) interfaces for five metals, Ti, Pd, Pt, Cu, and Au, based on the first-principles quantum mechanical (QM) density functional and matrix Green’s function methods. We find that the contact resistance (normalized to surface...
متن کاملA Study on Graphene—Metal Contact
The contact resistance between graphene and metal electrodes is crucial for the achievement of high-performance graphene devices. In this study, we review our recent study on the graphene–metal contact characteristics from the following viewpoints: (1) metal preparation method; (2) asymmetric conductance; (3) annealing effect; (4) interfaces impact.
متن کاملElectroless Nickel Deposition: An Alternative for Graphene Contacting.
We report the first investigation into the potential of electroless nickel deposition to form ohmic contacts on single layer graphene. To minimize the contact resistance on graphene, a statistical model was used to improve metal purity, surface roughness, and coverage of the deposited film by controlling the nickel bath parameters (pH and temperature). The metalized graphene layers were pattern...
متن کاملThe origins and limits of metal-graphene junction resistance.
A high-quality junction between graphene and metallic contacts is crucial in the creation of high-performance graphene transistors. In an ideal metal-graphene junction, the contact resistance is determined solely by the number of conduction modes in graphene. However, as yet, measurements of contact resistance have been inconsistent, and the factors that determine the contact resistance remain ...
متن کاملModifying Surface Energy of Graphene via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces.
The high mobility exhibited by both supported and suspended graphene, as well as its large in-plane thermal conductivity, has generated much excitement across a variety of applications. As exciting as these properties are, one of the principal issues inhibiting the development of graphene technologies pertains to difficulties in engineering high-quality metal contacts on graphene. As device dim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 10 12 شماره
صفحات -
تاریخ انتشار 2016