Glycogen synthase kinase-3beta suppression eliminates tumor necrosis factor-related apoptosis-inducing ligand resistance in prostate cancer.
نویسندگان
چکیده
Prostate cancer is a major health threat for American men. Therefore, the development of effective therapeutic options is an urgent issue for prostate cancer treatment. In this study, we evaluated the effect of glycogen synthase kinase-3beta (GSK-3beta) suppression on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human prostate cancer cell lines. In the presence of lithium chloride (LiCl) or SB216763, the GSK-3beta inhibitors, TRAIL-induced cell death was dramatically enhanced, and the enhanced cell death was an augmented apoptotic response evidenced by increased Annexin V labeling and caspase-3 activation. GSK-3beta gene silencing mediated by a small interference RNA (siRNA) duplex also sensitized the cells to TRAIL, confirming the specificity of GSK-3beta suppression. Importantly, TRAIL stimulation increased GSK-3beta tyrosine phosphorylation at Y216, suggesting that GSK-3beta is activated by TRAIL. Furthermore, TRAIL sensitization was associated with increased proteolytic procession of caspase-8 and its downstream target BID, and z-IETD-FMK, the inhibitor specific to active caspase-8 totally blocked LiCl-induced TRAIL sensitization. Finally, Trichodion, a potent nuclear factor-kappaB (NF-kappaB) inhibitor, could not affect LiCl-induced TRAIL sensitization, although GSK-3beta inhibitors significantly blocked TRAIL-reduced NF-kappaB activity in prostate cancer cells. These results indicate that GSK-3beta suppression sensitizes prostate cancer cells to TRAIL-induced apoptosis that is dependent on caspase-8 activities but independent of NF-kappaB activation, and suggest that a mechanism involving GSK-3beta activation may be responsible for TRAIL resistance in prostate cancer cells.
منابع مشابه
Role of protein kinase CK2 in the regulation of tumor necrosis factor-related apoptosis inducing ligand-induced apoptosis in prostate cancer cells.
Protein kinase CK2 (formerly casein kinase 2 or II) is a ubiquitous and highly conserved protein Ser/Thr kinase that plays diverse roles such as in cell proliferation and apoptosis. With respect to the latter, we originally showed that elevated CK2 could suppress various types of apoptosis in prostate cancer cells; however, the downstream pathways that respond to CK2 for mediating the suppressi...
متن کاملCyclic AMP suppresses matrix metalloproteinase-1 expression through inhibition of MAPK and GSK-3beta.
Expression of matrix metalloproteinase-1 (MMP-1) is stimulated by diverse stimuli and is likely to be regulated by many signaling pathways. cAMP is known to act as a second messenger for various extracellular stimuli and to be involved in the regulation of cell proliferation, apoptosis, and inflammation. Here, we investigated the effect of cAMP on tumor necrosis factor (TNF)-alpha-induced MMP-1...
متن کاملDrug Interactions between the Proteasome Inhibitor Bortezomib and Cytotoxic Chemotherapy, Tumor Necrosis Factor (TNF) , and TNF-Related Apoptosis-Inducing Ligand in Prostate Cancer
Purpose: Proteasome inhibition has been shown to be an effective anticancer therapy in many tumor models, including prostate cancer. We sought to identify drug interactions between the proteasome inhibitor bortezomib and other apoptotic stimuli, including cytotoxic chemotherapy and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). In addition, we wanted to gain insight into the r...
متن کاملInhibition of glycogen synthase kinase 3beta during heart failure is protective.
Glycogen synthase kinase (GSK)-3, a negative regulator of cardiac hypertrophy, is inactivated in failing hearts. To examine the histopathological and functional consequence of the persistent inhibition of GSK-3beta in the heart in vivo, we generated transgenic mice with cardiac-specific overexpression of dominant negative GSK-3beta (Tg-GSK-3beta-DN) and tetracycline-regulatable wild-type GSK-3b...
متن کاملDownmodulation of dimethyl transferase activity enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in prostate cancer cells.
One of the major obstacles in curing prostate cancer is the development of drug resistance. It is not only imperative to discover the molecular basis of resistance but also to find therapeutic agents that can disrupt the resistant pathways. Tumor necrosis factor TNF-related apoptosis-inducing ligand TRAIL-like ligands or agonist TRAIL-receptor monoclonal antibodies have entered phase I and II c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 2 11 شماره
صفحات -
تاریخ انتشار 2003