Inferring Social Networks from Outbreaks
نویسندگان
چکیده
We consider the problem of inferring the most likely social network given connectivity constraints imposed by observations of outbreaks within the network. Given a set of vertices (or agents) V and constraints (or observations) Si ⊆ V we seek to find a minimum loglikelihood cost (or maximum likelihood) set of edges (or connections) E such that each Si induces a connected subgraph of (V,E). For the offline version of the problem, we prove an Ω(log(n)) hardness of approximation result for uniform cost networks and give an algorithm that almost matches this bound, even for arbitrary costs. Then we consider the online problem, where the constraints are satisfied as they arrive. We give an O(n log(n))-competitive algorithm for the arbitrary cost online problem, which has an Ω(n)-competitive lower bound. We look at the uniform cost case as well and give an O(n log(n))-competitive algorithm against an oblivious adversary, as well as an Ω( √ n)-competitive lower bound against an adaptive adversary. We examine cases when the underlying network graph is known to be a star or a path, and prove matching upper and lower bounds of Θ(log(n)) on the competitive ratio for them.
منابع مشابه
Prediction of user's trustworthiness in web-based social networks via text mining
In Social networks, users need a proper estimation of trust in others to be able to initialize reliable relationships. Some trust evaluation mechanisms have been offered, which use direct ratings to calculate or propagate trust values. However, in some web-based social networks where users only have binary relationships, there is no direct rating available. Therefore, a new method is required t...
متن کاملInferring Social Network Structure from Bacterial Sequence Data
Using DNA sequence data from pathogens to infer transmission networks has traditionally been done in the context of epidemics and outbreaks. Sequence data could analogously be applied to cases of ubiquitous commensal bacteria; however, instead of inferring chains of transmission to track the spread of a pathogen, sequence data for bacteria circulating in an endemic equilibrium could be used to ...
متن کاملInferring Social Ties across Heterogeneous Networks
It is well known that different types of social ties have essentially different influence on people. However, users in online social networks rarely categorize their contacts into “family”, “colleagues”, or “classmates”. While a bulk of research has focused on inferring particular types of relationships in a specific social network, few publications systematically study the generalization of th...
متن کاملInferring Semantic Maps
Semantic maps are a means of representing universal structure underlying crosslanguage semantic variation. However, no algorithm has existed for inferring a graph-based semantic map from data. Here, we note that this open problem is formally identical to the known problem of inferring a social network from disease outbreaks. From this identity it follows that semantic map inference is computati...
متن کاملDetecting Hierarchical Ties Using Link-Analysis Ranking at Different Levels of Time Granularity
Social networks contain implicit knowledge that can be used to infer hierarchical relations that are not explicitly present in the available data. Interaction patterns are typically affected by users’ social relations. We present an approach to inferring such information that applies a link-analysis ranking algorithm at different levels of time granularity. In addition, a voting scheme is emplo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010