PKCθ signaling is required for myoblast fusion by regulating the expression of caveolin-3 and β1D integrin upstream focal adhesion kinase
نویسندگان
چکیده
Fusion of mononucleated myoblasts to form multinucleated myofibers is an essential phase of skeletal myogenesis, which occurs during muscle development as well as during postnatal life for muscle growth, turnover, and regeneration. Many cell adhesion proteins, including integrins, have been shown to be important for myoblast fusion in vertebrates, and recently focal adhesion kinase (FAK), has been proposed as a key mediator of myoblast fusion. Here we focused on the possible role of PKC, the PKC isoform predominantly expressed in skeletal muscle, in myoblast fusion. We found that the expression of PKC is strongly up-regulated following freeze injury-induced muscle regeneration, as well as during in vitro differentiation of satellite cells (SCs; the muscle stem cells). Using both PKC knockout and muscle-specific PKC dominant-negative mutant mouse models, we observed delayed body and muscle fiber growth during the first weeks of postnatal life, when compared with wild-type (WT) mice. We also found that myofiber formation, during muscle regeneration after freeze injury, was markedly impaired in PKC mutant mice, as compared with WT. This phenotype was associated with reduced expression of the myogenic differentiation program executor, myogenin, but not with that of the SC marker Pax7. Indeed in vitro differentiation of primary muscle-derived SCs from PKC mutants resulted in the formation of thinner myotubes with reduced numbers of myonuclei and reduced fusion rate, when compared with WT cells. These effects were associated to reduced expression of the profusion genes caveolin-3 and β1D integrin and to reduced activation/phosphorylation of their up-stream regulator FAK. Indeed the exogenous expression of a constitutively active mutant form of PKC in muscle cells induced FAK phosphorylation. Moreover pharmacologically mediated full inhibition of FAK activity led to similar fusion defects in both WT and PKC-null myoblasts. We thus propose that PKC signaling regulates myoblast fusion by regulating, at least in part, FAK activity, essential for profusion gene expression.
منابع مشابه
Focal adhesion kinase signaling regulates the expression of caveolin 3 and beta1 integrin, genes essential for normal myoblast fusion.
An essential phase of skeletal myogenesis is the fusion of mononucleated myoblasts to form multinucleated myotubes. Many cell adhesion proteins, including integrins, have been shown to be important for myoblast fusion in vertebrates, but the mechanisms by which these proteins regulate cell fusion remain mostly unknown. Here, we focused on the role of focal adhesion kinase (FAK), an important no...
متن کاملFocal Adhesion Kinase Signaling Regulates the Expression of Caveolin 3 and 1 Integrin, Genes Essential for Normal Myoblast Fusion
*Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305; †Department of Physiology, University of California, San Francisco, San Francisco, CA 94158; ‡Department of Cellular and Structural Biology, Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229; and §Neurology Service, VA Palo ...
متن کاملSNARE-mediated membrane traffic is required for focal adhesion kinase signaling and Src-regulated focal adhesion turnover.
Integrin signaling is central to cell growth and differentiation, and critical for the processes of apoptosis, cell migration and wound repair. Previous research has demonstrated a requirement for SNARE-dependent membrane traffic in integrin trafficking, as well as cell adhesion and migration. The goal of the present research was to ascertain whether SNARE-dependent membrane trafficking is requ...
متن کاملFocal Adhesion Kinase (FAK) Involvement in Human Endometrial Remodeling During the Menstrual Cycle
Background: Endometrial remodeling occurs during each menstrual cycle in women. Reports have shown that, in a variety of cell types, processes such as proliferation, signaling complex formation and extra cellular matrix remodeling require a cytoplasmic tyrosine kinase, focal adhesion kinase (FAK). The present study has focused on the expression pattern of FAK in human endometrium during the men...
متن کاملFRZB and melusin, overexpressed in LGMD2A, regulate integrin β1D isoform replacement altering myoblast fusion and the integrin-signalling pathway.
Limb-girdle muscular dystrophy type 2A (LGMD2A) is characterised by muscle wasting and progressive degeneration of proximal muscles because of mutations in the CAPN3 gene. However, the underlying pathophysiological mechanisms of muscle degeneration are still not well understood. The objective of this study was to assess the relevance of genes with differential expression in the muscle of LGMD2A...
متن کامل