Stability of Polar Decompositions

نویسندگان

  • Cornelis V. M. van der Mee
  • André C. M. Ran
  • Branko Najman
چکیده

Certain continuity properties of the factors in generalized polar decompositions of real and complex matrices are studied. A complete characterization is given of those generalized polar decompositions that persist under small perturbations in the matrix and in the scalar product. Connections are made with quadratic matrix equations, and with stability properties of certain invariant subspaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of self-adjoint square roots and polar decompositions in inde®nite scalar product spaces

Continuity properties of factors in polar decompositions of matrices with respect to inde®nite scalar products are studied. The matrix having the polar decomposition and the inde®nite scalar product are allowed to vary. Closely related properties of a self-adjoint (with respect to an inde®nite scalar product) perturbed matrix to have a self-adjoint square root, or to have a representation of th...

متن کامل

Using Zolotarev’s Rational Approximation for Computing the Polar, Symmetric Eigenvalue, and Singular Value Decompositions

The polar decomposition A = UpH finds many uses in applications, and it is a fundamental tool for computing the symmetric eigenvalue decomposition and the singular value decomposition via a spectral divide-and-conquer process. Conventional algorithms for these decompositions are suboptimal in view of recent trends in computer architectures, which require minimizing communication together with a...

متن کامل

Computing Fundamental Matrix Decompositions Accurately via the Matrix Sign Function in Two Iterations: The Power of Zolotarev's Functions

The symmetric eigenvalue decomposition and the singular value decomposition (SVD) are fundamental matrix decompositions with many applications. Conventional algorithms for computing these decompositions are suboptimal in view of recent trends in computer architectures, which require minimizing communication together with arithmetic costs. Spectral divideand-conquer algorithms, which recursively...

متن کامل

Adjoints, absolute values and polar decompositions

Various questions about adjoints, absolute values and polar decompositions of operators are addressed from a constructive point of view. The focus is on bilinear forms. Conditions are given for the existence of an adjoint, and a general notion of a polar decomposition is developed. The Riesz representation theorem is proved without countable choice.

متن کامل

Generalized Polar Decompositions for Closed Operators in Hilbert Spaces and Some Applications

We study generalized polar decompositions of densely defined, closed linear operators in Hilbert spaces and provide some applications to relatively (form) bounded and relatively (form) compact perturbations of self-adjoint, normal, and m-sectorial operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014