Kinetic analysis and test-retest variability of the radioligand [11C](R)-PK11195 binding to TSPO in the human brain - a PET study in control subjects
نویسندگان
چکیده
BACKGROUND Positron-emission tomography and the radioligand [11C](R)-PK11195 have been used for the imaging of the translocator protein (TSPO) and applied to map microglia cells in the brain in neuropsychiatric disorders. [11C](R)-PK11195 binding has been quantified using reference region approaches, with the reference defined anatomically or using unsupervised or supervised clustering algorithms. Kinetic compartment modelling so far has not been presented. In the present test-retest study, we examine the characteristics of [11C](R)-PK11195 binding in detail, using the classical compartment analysis with a metabolite-corrected arterial input function. METHODS [11C](R)-PK11195 binding was examined in six control subjects at two separate occasions, 6 weeks apart. Results of one-tissue and two-tissue compartment models (1TCM, 2TCM) were compared using the Akaike criteria and F-statistics. The reproducibility of binding potential (BPND) estimates was evaluated by difference in measurements (error in percent) and intraclass correlation coefficients (ICCs). RESULTS [11C](R)-PK11195 binding could be described by 2TCM which was the preferred model. Measurement error (in percent) indicated good reproducibility in large brain regions (mean error: whole brain 4%, grey matter 5%), but not in smaller subcortical regions (putamen 25%, caudate 55%). The ICC values were moderate to low, highest for the white matter (0.73), whole brain and thalamus (0.57), and cortical grey matter (0.47). Sizeable [11C](R)-PK11195 BPND could be identified throughout the human brain (range 1.11 to 2.21). CONCLUSIONS High intra-subject variability of [11C](R)-PK11195 binding limits longitudinal monitoring of TSPO changes. The interpretation of [11C](R)-PK11195 binding by 2TCM suggests that the presence of specific binding to TSPO cannot be excluded at physiological conditions.
منابع مشابه
Radiosynthesis and in vivo evaluation of two imidazopyridineacetamides, [11C]CB184 and [11C]CB190, as a PET tracer for 18 kDa translocator protein: direct comparison with [11C](R)-PK11195
OBJECTIVE We report synthesis of two carbon-11 labeled imidazopyridines TSPO ligands, [(11)C]CB184 and [(11)C]CB190, for PET imaging of inflammatory process along with neurodegeneration, ischemia or brain tumor. Biodistribution of these compounds was compared with that of [(11)C]CB148 and [(11)C](R)-PK11195. METHODS Both [(11)C]CB184 and [(11)C]CB190 having (11)C-methoxyl group on an aromatic...
متن کاملComparison of four 11C-labeled PET ligands to quantify translocator protein 18 kDa (TSPO) in human brain: (R)-PK11195, PBR28, DPA-713, and ER176—based on recent publications that measured specific-to-non-displaceable ratios
Translocator protein (TSPO) is a biomarker for detecting neuroinflammation by PET. 11C-(R)-PK11195 has been used to image TSPO since the 1980s. Here, we compared the utility of four 11C-labeled ligands-(R)-PK11195, PBR28, DPA-713, and ER176-to quantify TSPO in healthy humans. For all of these ligands, BP ND (specific-to-non-displaceable ratio of distribution volumes) was measured by partially b...
متن کاملAssessment of simplified ratio-based approaches for quantification of PET [11C]PBR28 data
PURPOSE Kinetic modelling with metabolite-corrected arterial plasma is considered the gold standard for quantification of [11C]PBR28 binding to the translocator protein (TSPO), since there is no brain region devoid of TSPO that can serve as reference. The high variability in binding observed using this method has motivated the use of simplified ratio-based approaches such as standardised uptake...
متن کاملKinetic modelling of [11C]PBR28 for 18 kDa translocator protein PET data: A validation study of vascular modelling in the brain using XBD173 and tissue analysis.
The 18 kDa translocator protein (TSPO) is a marker of microglia activation in the central nervous system and represents the main target of radiotracers for the in vivo quantification of neuroinflammation with positron emission tomography (PET). TSPO PET is methodologically challenging given the heterogeneous distribution of TSPO in blood and brain. Our previous studies with the TSPO tracers [11...
متن کاملMixed-affinity binding in humans with 18-kDa translocator protein ligands.
UNLABELLED 11C-PBR28 PET can detect the 18-kDa translocator protein (TSPO) expressed within macrophages. However, quantitative evaluation of the signal in brain tissue from donors with multiple sclerosis (MS) shows that PBR28 binds the TSPO with high affinity (binding affinity [Ki], ∼4 nM), low affinity (Ki, ∼200 nM), or mixed affinity (2 sites with Ki, ∼4 nM and ∼300 nM). Our study tested whet...
متن کامل