The cAMP phosphodiesterase encoded by CaPDE2 is required for hyphal development in Candida albicans.

نویسندگان

  • Won Hee Jung
  • Lubomira I Stateva
چکیده

The cAMP-dependent pathway, which regulates yeast-to-hypha morphogenesis in Candida albicans, is controlled by changes in cAMP levels determined by the processes of synthesis and hydrolysis. Both low- and high-affinity cAMP phosphodiesterases are encoded in the C. albicans genome. CaPDE2, encoding the high-affinity cAMP phosphodiesterase, has been cloned and shown to be toxic in Saccharomyces cerevisiae upon overexpression under pGAL1, but functional under the moderate pMET3. Deletion of CaPDE2 causes elevated cAMP levels and responsiveness to exogenous cAMP, higher sensitivity to heat shock, severe growth defects at 42 degrees C and highly reduced levels of EFG1 transcription. In vitro in hypha-inducing liquid medium CaPDE2, deletion prohibits normal hyphal, but not pseudohyphal growth. On solid medium capde2 mutants form aberrant hyphae, with fewer branches and almost no lateral buds, which are deficient in hypha-to-yeast reversion. The phenotypic defects of capde2 mutants show that the cAMP-dependent pathway plays specific roles in hyphal and pseudohyphal development, its regulatory role however, being greater in liquid than on solid medium in vitro. The increased expression of CaPDE2 after serum addition correlates well with a drop in cAMP levels following the initial rise in response to the hyphal inducer. These results suggest that Capde2p mediates a desensitization mechanism by lowering basal cAMP levels in response to environmental stimuli in C. albicans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans.

The transcription factor Flo8 is essential for filamentous growth in Saccharomyces cerevisiae and is regulated under the cAMP/protein kinase A (PKA) pathway. To determine whether a similar pathway/regulation exists in Candida albicans, we have cloned C. albicans FLO8 by its ability to complement S. cerevisiae flo8. Deleting FLO8 in C. albicans blocked hyphal development and hypha-specific gene ...

متن کامل

Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation.

Candida albicans is the most common cause of invasive fungal infections in humans. Its ability to undergo the morphological transition from yeast to hyphal growth forms is critical for its pathogenesis. Hyphal initiation requires the activation of the cAMP-PKA pathway, which down-regulates the expression of NRG1, the major repressor of hyphal development. Hyphal initiation also requires inocula...

متن کامل

Hyphal Development in Candida albicans Requires Two Temporally Linked Changes in Promoter Chromatin for Initiation and Maintenance

Phenotypic plasticity is common in development. For Candida albicans, the most common cause of invasive fungal infections in humans, morphological plasticity is its defining feature and is critical for its pathogenesis. Unlike other fungal pathogens that exist primarily in either yeast or hyphal forms, C. albicans is able to switch reversibly between yeast and hyphal growth forms in response to...

متن کامل

Integration of the tricarboxylic acid (TCA) cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans

Morphological transitions and metabolic regulation are critical for the human fungal pathogen Candida albicans to adapt to the changing host environment. In this study, we generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA) cycle, and investigated the functional consequences of these gene deletions on C. albicans biology. Inactivation of the TCA cycle impair...

متن کامل

The Flo8 Transcription Factor Is Essential for Hyphal Development and Virulence in Candida albicans□D

The transcription factor Flo8 is essential for filamentous growth in Saccharomyces cerevisiae and is regulated under the cAMP/protein kinase A (PKA) pathway. To determine whether a similar pathway/regulation exists in Candida albicans, we have cloned C. albicans FLO8 by its ability to complement S. cerevisiae flo8. Deleting FLO8 in C. albicans blocked hyphal development and hypha-specific gene ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 149 Pt 10  شماره 

صفحات  -

تاریخ انتشار 2003