Dynamic Local Search for SAT: Design, Insights and Analysis

نویسنده

  • David Andrew Douglas Tompkins
چکیده

In Boolean logic, a formula is satisfiable if a variable assignment exists that will make the formula equivalent to true, and the propositional satisfiability problem (SAT) is to determine if a given formula is satisfiable. SAT is one of the most fundamental problems in computer science, and since many relevant combinatorial problems can be encoded into SAT, it is of substantial theoretical and practical interest. A popular and successful approach to solving combinatorial problems such as SAT is Stochastic Local Search (SLS). In this dissertation we focus on SLS algorithms for SAT, which can find satisfying variable assignments effectively, but cannot determine if no satisfying variable assignment exists. Our primary goal is to advance the state-of-the-art for SLS algorithms for SAT. We accomplish this goal explicitly by developing new SLS algorithms that outperform the existing algorithms on interesting benchmark problems, and implicitly by advancing the understanding of current algorithms and introducing tools for developing new algorithms. The prevalent theme of our work is Dynamic Local Search (DLS), where DLS algorithms use their search history to dynamically change their behaviour. The cornerstone of this dissertation is UBCSAT, a software framework we developed for efficiently implementing and empirically evaluating SLS algorithms for SAT. We present the SCALING AND PROBABILISTIC SMOOTHING (SAPS) algorithm, which is amongst the state-of-the-art SLS algorithms for SAT. We provide an in-depth study of a class of DLS algorithms, analyze their performance and significantly advance the understanding of their behaviour. We also advance the understanding of the role of random decisions in SLS algorithms, by providing an empirical analysis on both the quality and quantity of random decisions. The capstone of this dissertation is a new conceptual model for representing and designing SLS algorithms for SAT. We introduce a new software design architecture that implements our model and is specifically designed to leverage recent tools to automate many of the tedious aspects of algorithm design. We demonstrate that by following our new algorithm design approach, we have achieved significant improvements over previous state-of-the-art SLS algorithms for SAT on encodings of software verification benchmark instances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT

In this paper, we study the approach of dynamic local search for the SAT problem. We focus on the recent and promising Exponentiated Sub-Gradient (ESG) algorithm, and examine the factors determining the time complexity of its search steps. Based on the insights gained from our analysis, we developed Scaling and Probabilistic Smoothing (SAPS), an efficient SAT algorithm that is conceptually clos...

متن کامل

Scaling and Probabilistic Smoothing: Dynamic Local Search for Unweighted MAX-SAT

In this paper, we study the behaviour of the Scaling and Probabilistic Smoothing (SAPS) dynamic local search algorithm on the unweighted MAXSAT problem. MAX-SAT is a conceptually simple combinatorial problem of substantial theoretical and practical interest; many application-relevant problems, including scheduling problems or most probable explanation finding in Bayes nets, can be encoded and s...

متن کامل

A Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems

In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...

متن کامل

A Two Level Local Search for MAX-SAT Problems with Hard and Soft Constraints

Local search techniques have attracted considerable interest in the AI community since the development of GSAT for solving large propositional SAT problems. Newer SAT techniques, such as the Discrete Lagrangian Method (DLM), have further improved on GSAT and can also be applied to general constraint satisfaction and optimisation. However, little work has applied local search to MAX-SAT problems...

متن کامل

Stochastic Local Search Methods for Dynamic SAT — an Initial Investigation

We introduce the dynamic SAT problem, a generalisation of the satisfiability problem in propositional logic which allows changes of a problem over time. DynSAT can be seen as a particular form of a dynamic CSP, but considering results and recent success in solving conventional SAT problems, we believe that the conceptual simplicity of SAT will allow us to more easily devise and investigate high...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010