New ZnO@Cardanol Porphyrin Composite Nanomaterials with Enhanced Photocatalytic Capability under Solar Light Irradiation
نویسندگان
چکیده
This work describes the synthesis, characterization, and photocatalytic activity of new composite nanomaterials based on ZnO nanostructures impregnated by lipophlilic porphyrins derived from cashew nut shell liquid (CNSL). The obtained nanomaterials were characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and steady-state photoluminescence spectra (PL). The results confirm nanostructures showing average diameter of 55 nm and an improved absorption in the visible region. Further, the FTIR analysis proved the existence of non-covalent interactions between the porphyrin molecules and ZnO. The photocatalytic activity of prepared photocatalysts was investigated by degradation of rhodamine B (RhB) in aqueous solution under visible light irradiation and natural sunlight. It was demonstrated that the photocatalytic activity increases in the presence of the porphyrins and, also, depends on the irradiation source. The development of composite photocatalysts based on porphyrins derived from CNSL provides an alternative approach to eliminate efficiently toxic wastes from water under ambient conditions.
منابع مشابه
Design and application of Au decorated ZnO/TiO2 as a stable photocatalyst for wide spectral coverage.
A ternary nanostructured photocatalyst consisting of ZnO/TiO2/Au was designed to achieve an enhanced solar absorption due to the coupling of surface enhanced plasmonic absorption of metal and semiconductor excitons. TiO2 coated ZnO rods with an aspect ratio of 8-12 were decorated with citrate capped gold nanoparticles for photocatalytic degradation of organic pollutants in simulated waste water...
متن کاملPhotocatalytic degradation of some organic dyes under solar light irradiation using TiO2 and ZnO nanoparticles
Nanoparticles of the ZnO and TiO2 were synthesized and the physicochemical properties of the compounds were characterized by IR, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD patterns of the ZnO and TiO2 nanoparticles could be indexed to hexagonal and rutile phase, respectively. Aggregated nanoparticles of Z...
متن کاملDegradation of Diclofenac Sodium under Solar Light Irradiation by Photocatalytic Performance of ZnO and V2O5
Pharmaceutical pollutants are one of the most important issues of modern life and their negative effects on the environment and human health are undeniable. In the present work, the effectiveness of the photocatalytic process was studied by two semiconductors (ZnO and V2O5) in order to remove the Diclofenac Sodium completely under solar irradiation. The study examined the impact of parameters s...
متن کاملFacile Synthesis of g-C3N4 Nanosheets/ZnO Nanocomposites with Enhanced Photocatalytic Activity in Reduction of Aqueous Chromium(VI) under Visible Light
Graphitic-C₃N₄ nanosheets (CN)/ZnO photocatalysts (CN/ZnO) with different CN loadings were successfully prepared via a simple precipitation-calcination in the presence of exfoliated C₃N₄ nanosheets. Their morphology and structure were thoroughly characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray ph...
متن کاملEnhanced Photocatalytic Performance of ZnO Nanorods Coupled by Two-Dimensional α-MoO3 Nanoflakes under UV and Visible Light Irradiation.
We exploit the utilization of two-dimensional (2D) molybdenum oxide nanoflakes as a co-catalyst for ZnO nanorods (NRs) to enhance their photocatalytic performance. The 2D nanoflakes of orthorhombic α-MoO3 were synthesized through a sonication-aided exfoliation technique. The 2D MoO3 nanoflakes can be further converted to substoichiometric quasi-metallic MoO3-x by using UV irradiation. Subsequen...
متن کامل