Identification and regulation of whole-cell chloride currents in airway epithelium

نویسندگان

  • J D McCann
  • M Li
  • M J Welsh
چکیده

We used the whole-cell patch-clamp technique to study membrane currents in human airway epithelial cells. The conductive properties, as described by the instantaneous current-voltage relationship, rectified in the outward direction when bathed in symmetrical CsCl solutions. In the presence of Cl concentration gradients, currents reversed near ECl and were not altered significantly by cations. Agents that inhibit the apical membrane Cl conductance inhibited Cl currents. These conductive properties are similar to the conductive properties of the apical membrane Cl channel studied with the single-channel patch-clamp technique. The results suggest that the outwardly rectifying Cl channel is the predominant Cl-conductive pathway in the cell membrane. The steady-state and non-steady-state kinetics indicate that current flows through ion channels that are open at hyperpolarizing voltages and close with depolarization. These Cl currents were regulated by the cAMP-dependent protein kinase: when the catalytic subunit of cAMP-dependent protein kinase was included in the pipette solution, Cl channel current more than doubled. We also found that reducing extracellular osmolarity by 30% increased Cl current, suggesting that cell-swelling stimulated Cl current. Studies of transepithelial Cl transport in cell monolayers suggest that a reduction in solution osmolarity activates the apical Cl channel: reducing extracellular osmolarity stimulated a short-circuit current that was inhibited by Cl-free solution, by mucosal addition of a Cl channel antagonist, and by submucosal addition of a loop diuretic. These results suggest that apical membrane Cl channels may be regulated by cell volume and by the cAMP-dependent protein kinase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chloride channel expression in cultured human fetal RPE cells: response to oxidative stress.

PURPOSE The human fetal cell line RPE 28 SV4 has been useful for studies of oxidative stress and apoptosis in retinal pigmented epithelium. This cell model is now assessed in functional investigations of chloride channel activity. The study aims to determine the presence of specific chloride channels, including CFTR and ClC channels, to identify the properties of membrane chloride currents and ...

متن کامل

Noradrenergic System Increases Miniature Excitatory Synaptic Currents in the Barrel Cortex

Introduction: Neurons in layer II and III of the somatosensory cortex in rats show high frequency (33 ± 13 Hz) of miniature excitatory postsynaptic currents (mEPSCs) that their rates and amplitudes are independent of sodium channels. There are some changes in these currents in neurodegenerative and psychological disorders. Regarding to well known roles of the neuromodulatory brain systems in...

متن کامل

Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1

Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...

متن کامل

GTP-binding proteins inhibit cAMP activation of chloride channels in cystic fibrosis airway epithelial cells.

Cystic fibrosis (CF) is a genetic disease characterized, in part, by defective regulation of Cl- secretion by airway epithelial cells. In CF, cAMP does not activate Cl- channels in the apical membrane of airway epithelial cells. We report here whole-cell patch-clamp studies demonstrating that pertussis toxin, which uncouples heterotrimeric GTP-binding proteins (G proteins) from their receptors,...

متن کامل

Analysis of ClC-2 channels as an alternative pathway for chloride conduction in cystic fibrosis airway cells.

Cystic fibrosis (CF) is a lethal inherited disease that results from abnormal chloride conduction in epithelial tissues. ClC-2 chloride channels are expressed in epithelia affected by CF and may provide a key "alternative" target for pharmacotherapy of this disease. To explore this possibility, the expression level of ClC-2 channels was genetically manipulated in airway epithelial cells derived...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 94  شماره 

صفحات  -

تاریخ انتشار 1989