Michel Deza , Michel Petitjean , Krassimir Markov

نویسندگان

  • Michel Deza
  • Michel Petitjean
  • Krassimir Markov
چکیده

We study differential-geometrical structure of an information manifold equipped with a divergence function.A divergence function generates a Riemannian metric and furthermore it provides a symmetric third-order tensor,when the divergence is asymmetric. This induces a pair of affine connections dually coupled to each other withrespect to the Riemannian metric. This is the arising emerged from information geometry. When a manifold is duallyflat (it may be curved in the sense of the Levi-Civita connection), we have a canonical divergence and a pair ofconvex functions from which the original dual geometry is reconstructed. The generalized Pythagorean theoremand projection theorem hold in such a manifold. This structure has lots of applications in information sciencesincluding statistics, machine learning, optimization, computer vision and Tsallis statistical mechanics. The presentarticle reviews the structure of information geometry and its relation to the divergence function. We further considerthe conformal structure given rise to by the generalized statistical model in relation to the power law.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity Conditions for Non-Differentiable Infinite Programming Problems using Michel-Penot Subdifferential

In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are locally Lipschitz‎. ‎Necessary optimality conditions and regularity conditions are given‎. ‎Our approach are based on the Michel-Penot subdifferential.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012