Asymptotic Analysis of Numerical Steepest Descent with Path Approximations

نویسندگان

  • Andreas Asheim
  • Daan Huybrechs
چکیده

We propose a variant of the numerical method of steepest descent for oscillatory integrals by using a low-cost explicit polynomial approximation of the paths of steepest descent. A loss of asymptotic order is observed, but in the most relevant cases the overall asymptotic order remains higher than a truncated asymptotic expansion at similar computational effort. Theoretical results based on number theory underpinning the mechanisms behind this effect are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Boundary Conditions for Dissipative Waves: General Theory

An outstanding issue in the computational analysis of time-dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. In this work we develop accurate conditions based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descent, we identify dominant wave groups and consider simple approximations to th...

متن کامل

A Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems

In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...

متن کامل

Steepest Descent Path Study of Electron-Transfer Reactions†

A nonadiabatic steepest descent path method is developed as a qualitative tool to analyze and characterize three different kinetic regimes of electron transfer. In this approach, Miller’s semiclassical instanton solution and Pechukas’ self-consistent treatment of nonadiabatic coupling are applied to the path integral representation of the two-state diffusion equation. The resulting steepest des...

متن کامل

A new Levenberg-Marquardt approach based on Conjugate gradient structure for solving absolute value equations

In this paper, we present a new approach for solving absolute value equation (AVE) whichuse Levenberg-Marquardt method with conjugate subgradient structure. In conjugate subgradientmethods the new direction obtain by combining steepest descent direction and the previous di-rection which may not lead to good numerical results. Therefore, we replace the steepest descentdir...

متن کامل

Steepest descent method on a Riemannian manifold: the convex case

In this paper we are interested in the asymptotic behavior of the trajectories of the famous steepest descent evolution equation on Riemannian manifolds. It writes ẋ (t) + gradφ (x (t)) = 0. It is shown how the convexity of the objective function φ helps in establishing the convergence as time goes to infinity of the trajectories towards points that minimize φ. Some numerical illustrations are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2010