Responses of nitrogen metabolism and seed nutrition to drought stress in soybean genotypes differing in slow-wilting phenotype1
نویسندگان
چکیده
Recent advances in soybean breeding have resulted in genotypes that express the slow-wilting phenotype (trait) under drought stress conditions. The physiological mechanisms of this trait remain unknown due to the complexity of trait × environment interactions. The objective of this research was to investigate nitrogen metabolism and leaf and seed nutrients composition of the slow-wilting soybean genotypes under drought stress conditions. A repeated greenhouse experiment was conducted using check genotypes: NC-Roy (fast wilting), Boggs (intermediate in wilting); and NTCPR94-5157 and N04-9646 (slow-wilting, SLW) genotypes. Plants were either well-watered or drought stressed. Results showed that under well-watered conditions, nitrogen fixation (NF), nitrogen assimilation (NA), and leaf and seed composition differed between genotypes. Under drought stress, NF and NA were higher in NTCPR94-5157 and N04-9646 than in NC-Roy and Boggs. Under severe water stress, however, NA was low in all genotypes. Leaf water potential was significantly lower in checks (-2.00 MPa) than in the SLW genotypes (-1.68 MPa). Leaf and seed concentrations of K, P, Ca, Cu, Na, B were higher in SLW genotypes than in the checks under drought stress conditions. Seed protein, oleic acid, and sugars were higher in SLW genotypes, and oil, linoleic and linolenic acids were lower in SLW genotypes. This research demonstrated that K, P, Ca, Cu, Na, and B may be involved in SLW trait by maintaining homeostasis and osmotic regulation. Maintaining higher leaf water potential in NTCPR94-5157 and N04-9646 under drought stress could be a possible water conservation mechanism to maintain leaf turgor pressure. The increase in osmoregulators such as minerals, raffinose, and stachyose, and oleic acid could be beneficial for soybean breeders in selecting for drought stress tolerance.
منابع مشابه
Metabolite Adjustments in Drought Tolerant and Sensitive Soybean Genotypes in Response to Water Stress
Soybean (Glycine max L.) is an important source of protein for human and animal nutrition, as well as a major source of vegetable oil. The soybean crop requires adequate water all through its growth period to attain its yield potential, and the lack of soil moisture at critical stages of growth profoundly impacts the productivity. In this study, utilizing (1)H NMR-based metabolite analysis comb...
متن کاملImproving soybean leaf physiological responses under drought stress by increasing seed zinc and iron concentration
To study the effects of both drought stress and seed zinc and iron concentrations on the photosynthesis, chlorophyll fluorescence, and proline and carbohydrate accumulations in soybean (Glycine max (L.) Merr. cv. M9) leaf, a split plot experiment was carried out in 2012 based on a randomized complete block design with three replications in greenhouse conditions at Yasouj University. Drought str...
متن کاملA Dehydration-Induced Eukaryotic Translation Initiation Factor iso4G Identified in a Slow Wilting Soybean Cultivar Enhances Abiotic Stress Tolerance in Arabidopsis
Water is usually the main limiting factor for soybean productivity worldwide and yet advances in genetic improvement for drought resistance in this crop are still limited. In the present study, we investigated the physiological and molecular responses to drought in two soybean contrasting genotypes, a slow wilting N7001 and a drought sensitive TJS2049 cultivars. Measurements of stomatal conduct...
متن کاملComparisons of the Effects of Elevated Vapor Pressure Deficit on Gene Expression in Leaves among Two Fast-Wilting and a Slow-Wilting Soybean
Limiting the transpiration rate (TR) of a plant under high vapor pressure deficit (VPD) has the potential to improve crop yield under drought conditions. The effects of elevated VPD on the expression of genes in the leaves of three soybean accessions, Plant Introduction (PI) 416937, PI 471938 and Hutcheson (PI 518664) were investigated because these accessions have contrasting responses to VPD ...
متن کاملResponse of Seed and Oil Yields and Phosphorus Agronomic Efficiency of Soybean to Simultaneous Placement of Nitrogen with Phosphorus under Drought Stress
In order to study yield, yield components and agronomic efficiency of phosphorus in soybean affected by simultaneous placement of nitrogen with phosphorus, an experiment was carried out under moisture stress conditions, at Agricultural Research Station of Bu Ali Sina University, Hamedan, Iran in 2017 in a factorial split plot based on randomized complete block design with three replications. Th...
متن کامل