Prevention of high-fat diet-induced muscular lipid accumulation in rats by alpha lipoic acid is not mediated by AMPK activation.
نویسندگان
چکیده
Skeletal muscle triglyceride accumulation is associated with insulin resistance in obesity. Recently, it has been suggested that alpha lipoic acid (ALA) improves insulin sensitivity by lowering triglyceride accumulation in nonadipose tissues via activation of skeletal muscle AMP-activated protein kinase (AMPK). We examined whether chronic ALA supplementation prevents muscular lipid accumulation that is associated with high-fat diets via activation of AMPK. In addition, we tested if ALA supplementation was able to improve insulin sensitivity in rats fed low- and high-fat diets (LFD, HFD). Supplementing male Wistar rats with 0.5% ALA for 8 weeks significantly reduced body weight, both on LFD and HFD (-24% LFD+ALA vs. LFD, P < 0.01, and -29% HFD+ALA vs. HFD, P < 0.001). Oil red O lipid staining revealed a 3-fold higher lipid content in skeletal muscle after HFD compared with LFD and ALA-supplemented groups (P < 0.05). ALA improved whole body glucose tolerance ( approximately 20% lower total area under the curve (AUC) in ALA supplemented groups vs. controls, P < 0.05). These effects were not mediated by increased muscular AMPK activation or ALA-induced improvement of muscular insulin sensitivity. To conclude, the prevention of HFD-induced muscular lipid accumulation and the improved whole body glucose tolerance are likely secondary effects due to the anorexic nature of ALA.
منابع مشابه
Alpha-lipoic acid prevents endothelial dysfunction in obese rats via activation of AMP-activated protein kinase.
OBJECTIVE Lipid accumulation in vascular endothelial cells may play an important role in the pathogenesis of atherosclerosis in obese subjects. We showed previously that alpha-lipoic acid (ALA) activates AMP-activated protein kinase (AMPK) and reduces lipid accumulation in skeletal muscle of obese rats. Here, we investigated whether ALA improves endothelial dysfunction in obese rats by activati...
متن کاملThe Effect of Alpha-Lipoic Acid on Learning and Memory Deficit in a Rat Model of Temporal Lobe Epilepsy
Introduction: Epilepsy is a chronic neurological disorder in which patients experience spontaneous recurrent seizures and deficiency in learning and memory. Although the most commonly recommended therapy is drug treatment, some patients do not achieve adequate control of their seizures on existing drugs. New medications with novel mechanisms of action are needed to help those patients whose sei...
متن کاملFolic acid supplementation during high-fat diet feeding restores AMPK activation via an AMP-LKB1-dependent mechanism.
AMPK is an endogenous energy sensor that regulates lipid and carbohydrate metabolism. Nonalcoholic fatty liver disease (NAFLD) is regarded as a hepatic manifestation of metabolic syndrome with impaired lipid and glucose metabolism and increased oxidative stress. Our recent study showed that folic acid supplementation attenuated hepatic oxidative stress and lipid accumulation in high-fat diet-fe...
متن کاملEmodin, a Naturally Occurring Anthraquinone Derivative, Ameliorates Dyslipidemia by Activating AMP-Activated Protein Kinase in High-Fat-Diet-Fed Rats
The aim of this study was to investigate the antiobesity and antihyperlipidaemic effects of emodin on high-fat diet (HFD)-induced obese rats, and on the regulation of the expression of the genes involved in lipid metabolism to elucidate the mechanisms. After being fed HFD for two weeks, Wistar rats were dosed orally with emodin (40 and 80 mg kg(-1)) or pioglitazone (20 mg kg(-1)), once daily fo...
متن کاملThe effects of chronic AMPK activation on hepatic triglyceride accumulation and glycerol 3-phosphate acyltransferase activity with high fat feeding
BACKGROUND High fat feeding increases hepatic fat accumulation and is associated with hepatic insulin resistance. AMP Activated Protein Kinase (AMPK) is thought to inhibit lipid synthesis by the acute inhibition of glycerol-3-phosphate acyltransferase (GPAT) activity and transcriptional regulation via sterol regulatory element binding protein-1c (SREBP-1c). METHODS The purpose of this study w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 51 2 شماره
صفحات -
تاریخ انتشار 2010