Colimits of Monads

نویسنده

  • Jirí Adámek
چکیده

The category of all monads over many-sorted sets (and over other " set-like " categories) is proved to have coequalizers and strong coin-tersections. And a general diagram has a colimit whenever all the monads involved preserve monomorphisms and have arbitrarily large joint pre-fixpoints. In contrast, coequalizers fail to exist e.g. for monads over the (presheaf) category of graphs. For more general categories we extend the results on coproducts of monads from [2]. We call a monad separated if, when restricted to monomor-phisms, its unit has a complement. We prove that every collection of separated monads with arbitrarily large joint pre-fixpoints has a coproduct. And a concrete formula for these coproducts is presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homotopy-theoretic Aspects of 2-monads

We study 2-monads and their algebras using a Cat-enriched version of Quillen model categories, emphasizing the parallels between the homotopical and 2-categorical points of view. Every 2-category with finite limits and colimits has a canonical model structure in which the weak equivalences are the equivalences; we use these to construct more interesting model structures on 2-categories, includi...

متن کامل

Theories

We consider the equivalence of Lawvere theories and finitary monads on Set from the perspective of Endf (Set)-enriched category theory, where Endf (Set) is the category of finitary endofunctors of Set. We identify finitary monads with one-object Endf (Set)-categories, and ordinary categories admitting finite powers (i.e., n-fold products of each object with itself) with Endf (Set)-categories ad...

متن کامل

Colimits for Concurrent Collectors

This case study applies techniques of formal program development by specification refinement and composition to the problem of concurrent garbage collection. The specification formalism is mainly based on declarative programming paradigms, the imperative aspect is dealt with by using monads. We also sketch the use of temporal logic in connection with monadic specifications.

متن کامل

Monads for which Structures are Adjoint to Units

We present here the equational two-dimensional categorical algebra which describes the process of freely completing a category under some class of limits or colimits. It is crystallized out of the authors 1967 dissertation [6] (revised form [7]). I presented a purely equational aspect of that already in 1973 [9], [10] , and the present note is in some sense identical to that, but with some furt...

متن کامل

Leibniz’s Monads and Mulla Sadra’s Hierarchy of Being: A Comparative Study

Mulla Sadra and Leibniz, the two philosophers from the East and the West, belong to two different worlds. Though they were unaware of the ideas of each other, their philosophical systems share certain common points that are comparable. Monads constitute the basis of Leibniz's thought and he refers to their features in his various works. On the other side, Mulla Sadra's philosophy is also based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1409.3805  شماره 

صفحات  -

تاریخ انتشار 2014