Ramification of rough paths

نویسنده

  • Massimiliano Gubinelli
چکیده

The stack of iterated integrals of a path is embedded in a larger algebraic structure where iterated integrals are indexed by decorated rooted trees and where an extended Chen’s multiplicative property involves the Dürr-Connes-Kreimer coproduct on rooted trees. This turns out to be the natural setting for a non-geometric theory of rough paths. MSC: 60H99; 65L99

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ارائه روشی ترکیبی برای افزایش دقت پیش‌بینی در کاهش داده با استفاده از مدل مجموعه راف و هوش تجمعی

Designing a system with an emphasis on minimal human intervention helps users to explore information quickly. Adverting to methods of analyzing large data is compulsory as well. Hence, utilizing power of the data mining process to identify patterns and models become more essential from aspect of relationship between the various elements in the database and discover hidden knowledge. Therefore, ...

متن کامل

Joining caterpillars and stability of the tree center

The path-table P(T ) of a tree T collects information regarding the paths in T: for each vertex v, the row of P(T ) relative to v lists the number of paths containing v of the various lengths. We call this row the path-row of v in T. Two trees having the same path-table (up to reordering the rows) are called path-congruent (or path-isomorphic). Motivated byKelly–Ulam’sReconstructionConjecture a...

متن کامل

Geometric versus non-geometric rough paths

In this article we consider rough differential equations (RDEs) driven by non-geometric rough paths, using the concept of branched rough paths introduced in [Gub10]. We first show that branched rough paths can equivalently be defined as γ-Hölder continuous paths in some Lie group, akin to geometric rough paths. We then show that every branched rough path can be encoded in a geometric rough path...

متن کامل

Algebraic invariants arising from the chromatic polynomials of theta graphs

This paper investigates some algebraic properties of the chromatic polynomials of theta graphs, i.e. graphs which have three internally disjoint paths sharing the same two distinct end vertices. We give a complete description of the Galois group, discriminant and ramification indices for the chromatic polynomials of theta graphs with three consecutive path lengths. We then do the same for theta...

متن کامل

Hypergeometric τ - functions , Hurwitz numbers and enumeration of paths ∗

A multiparametric family of 2D Toda τ -functions of hypergeometric type is shown to provide generating functions for composite, signed Hurwitz numbers that enumerate certain classes of branched coverings of the Riemann sphere and paths in the Cayley graph of Sn. The coefficients F c1,...,cl d1,...,dm (μ, ν) in their series expansion over products PμP ′ ν of power sum symmetric functions in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006