iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins
نویسندگان
چکیده
As one of the most important and universal posttranslational modifications (PTMs) of proteins, S-nitrosylation (SNO) plays crucial roles in a variety of biological processes, including the regulation of cellular dynamics and many signaling events. Knowledge of SNO sites in proteins is very useful for drug development and basic research as well. Unfortunately, it is both time-consuming and costly to determine the SNO sites purely based on biological experiments. Facing the explosive protein sequence data generated in the post-genomic era, we are challenged to develop automated vehicles for timely and effectively determining the SNO sites for uncharacterized proteins. To address the challenge, a new predictor called iSNO-AAPair was developed by taking into account the coupling effects for all the pairs formed by the nearest residues and the pairs by the next nearest residues along protein chains. The cross-validation results on a state-of-the-art benchmark have shown that the new predictor outperformed the existing predictors. The same was true when tested by the independent proteins whose experimental SNO sites were known. A user-friendly web-server for iSNO-AAPair was established at http://app.aporc.org/iSNO-AAPair/, by which users can easily obtain their desired results without the need to follow the mathematical equations involved during its development.
منابع مشابه
Prediction of Protein S-Nitrosylation Sites Based on Adapted Normal Distribution Bi-Profile Bayes and Chou’s Pseudo Amino Acid Composition
Protein S-nitrosylation is a reversible post-translational modification by covalent modification on the thiol group of cysteine residues by nitric oxide. Growing evidence shows that protein S-nitrosylation plays an important role in normal cellular function as well as in various pathophysiologic conditions. Because of the inherent chemical instability of the S-NO bond and the low abundance of e...
متن کاملiSNO-PseAAC: Predict Cysteine S-Nitrosylation Sites in Proteins by Incorporating Position Specific Amino Acid Propensity into Pseudo Amino Acid Composition
Posttranslational modifications (PTMs) of proteins are responsible for sensing and transducing signals to regulate various cellular functions and signaling events. S-nitrosylation (SNO) is one of the most important and universal PTMs. With the avalanche of protein sequences generated in the post-genomic age, it is highly desired to develop computational methods for timely identifying the exact ...
متن کاملiSuc-PseAAC: predicting lysine succinylation in proteins by incorporating peptide position-specific propensity
Lysine succinylation in protein is one type of post-translational modifications (PTMs). Succinylation is associated with some diseases and succinylated sites data just has been found in recent years in experiments. It is highly desired to develop computational methods to identify the candidate proteins and their sites. In view of this, a new predictor called iSuc-PseAAC was proposed by incorpor...
متن کاملiHyd-PseAAC: Predicting Hydroxyproline and Hydroxylysine in Proteins by Incorporating Dipeptide Position-Specific Propensity into Pseudo Amino Acid Composition
Post-translational modifications (PTMs) play crucial roles in various cell functions and biological processes. Protein hydroxylation is one type of PTM that usually occurs at the sites of proline and lysine. Given an uncharacterized protein sequence, which site of its Pro (or Lys) can be hydroxylated and which site cannot? This is a challenging problem, not only for in-depth understanding of th...
متن کاملPSNO: Predicting Cysteine S-Nitrosylation Sites by Incorporating Various Sequence-Derived Features into the General Form of Chou’s PseAAC
S-nitrosylation (SNO) is one of the most universal reversible post-translational modifications involved in many biological processes. Malfunction or dysregulation of SNO leads to a series of severe diseases, such as developmental abnormalities and various diseases. Therefore, the identification of SNO sites (SNOs) provides insights into disease progression and drug development. In this paper, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2013