Missense mutations in dystrophin that trigger muscular dystrophy decrease protein stability and lead to cross-beta aggregates.

نویسندگان

  • Surinder M Singh
  • Narsimulu Kongari
  • Javier Cabello-Villegas
  • Krishna M G Mallela
چکیده

A deficiency of functional dystrophin protein in muscle cells causes muscular dystrophy (MD). More than 50% of missense mutations that trigger the disease occur in the N-terminal actin binding domain (N-ABD or ABD1). We examined the effect of four disease-causing mutations--L54R, A168D, A171P, and Y231N--on the structural and biophysical properties of isolated N-ABD. Our results indicate that N-ABD is a monomeric, well-folded alpha-helical protein in solution, as is evident from its alpha-helical circular dichroism spectrum, blue shift of the native state tryptophan fluorescence, well-dispersed amide crosspeaks in 2D NMR (15)N-(1)H HSQC fingerprint region, and rotational correlation time calculated from NMR longitudinal (T(1)) and transverse (T(2)) relaxation experiments. Compared to WT, three mutants--L54R, A168D, and A171P--show a decreased alpha-helicity and do not show a cooperative sigmoidal melt with temperature, indicating that these mutations exist in a wide range of conformations or in a "molten globule" state. In contrast, Y231N has an alpha-helical content similar to WT and shows a cooperative sigmoidal temperature melt but with a decreased stability. All four mutants experience serious misfolding and aggregation. FT-IR, circular dichroism, increase in thioflavin T fluorescence, and the congo red spectral shift and birefringence show that these aggregates contain intermolecular cross-beta structure similar to that found in amyloid diseases. These results indicate that disease-causing mutants affect N-ABD structure by decreasing its thermodynamic stability and increasing its misfolding, thereby decreasing the net functional dystrophin concentration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disease-proportional proteasomal degradation of missense dystrophins.

The 427-kDa protein dystrophin is expressed in striated muscle where it physically links the interior of muscle fibers to the extracellular matrix. A range of mutations in the DMD gene encoding dystrophin lead to a severe muscular dystrophy known as Duchenne (DMD) or a typically milder form known as Becker (BMD). Patients with nonsense mutations in dystrophin are specifically targeted by stop c...

متن کامل

Thermodynamic stability, unfolding kinetics, and aggregation of the N-terminal actin-binding domains of utrophin and dystrophin.

Muscular dystrophy (MD) is the most common genetic lethal disorder in children. Mutations in dystrophin trigger the most common form of MD, Duchenne, and its allelic variant Becker MD. Utrophin is the closest homologue and has been shown to compensate for the loss of dystrophin in human disease animal models. However, the structural and functional similarities and differences between utrophin a...

متن کامل

A Two-amino Acid Mutation Encountered in Duchenne Muscular Dystrophy Decreases Stability of the Rod Domain 23 (R23) Spectrin-like Repeat of Dystrophin.

Lack of functional dystrophin causes severe Duchenne muscular dystrophy. The subsarcolemmal location of dystrophin, as well as its association with both cytoskeleton and membrane, suggests a role in the mechanical regulation of muscular membrane stress. In particular, phenotype rescue in a Duchenne muscular dystrophy mice model has shown that some parts of the central rod domain of dystrophin, ...

متن کامل

Disease-causing missense mutations in actin binding domain 1 of dystrophin induce thermodynamic instability and protein aggregation.

Mutations in the dystrophin gene cause Duchenne muscular dystrophy (DMD) most commonly through loss of protein expression. In a small subpopulation of patients, missense mutations can cause DMD, Becker muscular dystrophy, or X-linked cardiomyopathy. Nearly one-half of disease-causing missense mutations are located in actin-binding domain 1 (ABD1) of dystrophin. To test the hypothesis that ABD1 ...

متن کامل

P164: Adeno-Associated Viral Vectors in Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (BMD) is an inherited X-link disease. The incidence of this muscle-wasting disease is 1:5000 male live births. Mutation in the gene coding for dystrophin is the main cause of BMD. Most cases of this disease succumb to respiratory and cardiac failure in 3rd to 4th decades. The slow progression of BMD and recent achievement of gene therapies make it as an appropriate c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 34  شماره 

صفحات  -

تاریخ انتشار 2010