Tuning of the electronic properties of a cyclopentadienylruthenium catalyst to match racemization of electron-rich and electron-deficient alcohols.
نویسندگان
چکیده
The synthesis of a new series of cyclopentadienylruthenium catalysts with varying electronic properties and their application in racemization of secondary alcohols are described. These racemizations involve two key steps: 1) β-hydride elimination (dehydrogenation) and 2) re-addition of the hydride to the intermediate ketone. The results obtained confirm our previous theory that the electronic properties of the substrate determine which of these two steps is rate determining. For an electron-deficient alcohol the rate-determining step is the β-hydride elimination (dehydrogenation), whereas for an electron-rich alcohol the re-addition of the hydride becomes the rate-determining step. By matching the electronic properties of the catalyst with the electronic properties of the alcohol, we have now shown that a dramatic increase in racemization rate can be obtained. For example, electron-deficient alcohol 15 racemized 30 times faster with electron-deficient catalyst 6 than with the unmodified standard catalyst 4. The application of these protocols will extend the scope of cyclopentadienylruthenium catalysts in racemization and dynamic kinetic resolution.
منابع مشابه
Catalysts for Oxygen Production and Utilization Closing the Oxygen Cycle: From Biomimetic Oxidation to Artificial Photosynthesis
This thesis describes the development and study of catalysts for redox reactions, which either utilize oxygen or hydrogen peroxide for the purpose of selectively oxidizing organic substrates, or produce oxygen as the necessary byproduct in the production of hydrogen by artificial photosynthesis. The first chapter gives a general introduction about the use of environmentally friendly oxidants in...
متن کاملBand-Gap Tuning Of Electron Beam Evaporated Cds Thin Films
The effect of evaporation rate on structural, morphological and optical properties of electron beam evaporated CdS thin films have been investigated. CdS thin film deposited by electron beam evaporation method in 12nm/min and 60nm/min evaporation rates on glass substrates. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and Atomic Force Microscopy were used to character...
متن کاملCyanation and bromination of electron-rich aromatics by BrCN under solvent-free conditions catalyzed by AlCl3: A new examples of Beckmann-type rearrangement
A convenient route for cyanation and bromination of some electron-rich aromatics (anisole, 1,3-dimethoxybenzene, 1,4-dimethoxybenzene, 1,3,5-trimethoxybenzene and β-naphthol) by BrCN in the presence of aluminum trichloride (AlCl3), as catalyst, by grinding method under solvent-free conditions at room temperature to 60 °C was described in good yield. The structures of all obtained products were ...
متن کاملAqueous-phase oxidation of alcohols with green oxidants (Oxone and hydrogen peroxide) in the presence of MgFe2O4 magnetic nanoparticles as an efficient and reusable catalyst
Nanomagnetic MgFe2O4 is an active, stable, and reusable catalyst for the oxidation of alcohols. The oxidation of various primary and secondary alcohols has been examined and related corresponding products were obtained in good yields. The reactions were carried out in the presence of water as solvent and oxone (at room temperature) or H2O2 (at 60 ºC) as an oxidant. The catalyst was investigated...
متن کاملFe3O4@ZrO2-SO3H Nano-particles for esterification of carboxylic acids
In this work preparation of sulfonic acid functionalized magnetite encapsulated zirconia (Fe3O4@ZrO2-SO3H) has been reported. Structural, chemical, and magnetic properties of the magnetically supported catalyst have also been investigated by Fourier transform infrared (FT-IR) spectroscopy, wide angle X-ray diffraction spectroscopy (WXRD), thermal gravimetric analysis (TGA), energy dispersive X-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry
دوره 17 40 شماره
صفحات -
تاریخ انتشار 2011