Correlation Between Virulence Genotype and Fluoroquinolone Resistance in Carbapenem-Resistant Pseudomonas aeruginosa
نویسندگان
چکیده
BACKGROUND Pseudomonas aeruginosa is a clinically important pathogen that causes opportunistic infections and nosocomial outbreaks. Recently, the type III secretion system (TTSS) has been shown to play an important role in the virulence of P. aeruginosa. ExoU, in particular, has the greatest impact on disease severity. We examined the relationship among the TTSS effector genotype (exoS and exoU), fluoroquinolone resistance, and target site mutations in 66 carbapenem-resistant P. aeruginosa strains. METHODS Sixty-six carbapenem-resistant P. aeruginosa strains were collected from patients in a university hospital in Daejeon, Korea, from January 2008 to May 2012. Minimum inhibitory concentrations (MICs) of fluoroquinolones (ciprofloxacin and levofloxacin) were determined by using the agar dilution method. We used PCR and sequencing to determine the TTSS effector genotype and quinolone resistance-determining regions (QRDRs) of the respective target genes gyrA, gyrB, parC, and parE. RESULTS A higher proportion of exoU+ strains were fluoroquinolone-resistant than exoS+ strains (93.2%, 41/44 vs. 45.0%, 9/20; P≤0.0001). Additionally, exoU+ strains were more likely to carry combined mutations than exoS+ strains (97.6%, 40/41 vs. 70%, 7/10; P=0.021), and MIC increased as the number of active mutations increased. CONCLUSIONS The recent overuse of fluoroquinolone has led to both increased resistance and enhanced virulence of carbapenem-resistant P. aeruginosa. These data indicate a specific relationship among exoU genotype, fluoroquinolone resistance, and resistance-conferring mutations.
منابع مشابه
Carbapenem and Fluoroquinolone Resistance in Multidrug Resistant Pseudomonas aeruginosa Isolates from Al-Zahra Hospital, Isfahan, Iran
Introduction: The major resistance mechanisms of Pseudomonas aeruginosa to fluoroquinolones and carbapenems are associated with the mutations in the genes gyrA and oprD encoding type II topoisomerases (DNA gyrase) and OprD porin, respectively. Method: In this cross-sectional study, sixty five clinical samples were collected from patients hospitalized in Al-Zahra Hospital of Isfahan, Iran. Susce...
متن کاملDifferentiation in Quinolone Resistance by Virulence Genotype in Pseudomonas aeruginosa
Pseudomonas aeruginosa is a leading pathogen that has become increasingly resistant to the fluoroquinolone antibiotics due to widespread prescribing. Adverse outcomes have been shown for patients infected with fluoroquinolone-resistant strains. The type III secretion system (TTSS) is a major virulence determinant during acute infections through the injection of effector toxins into host cells. ...
متن کاملReduction in fluoroquinolone use following introduction of ertapenem into a hospital formulary is associated with improvement in susceptibility of Pseudomonas aeruginosa to group 2 carbapenems: a 10-year study.
We examined the effect of the addition of ertapenem to our hospital formulary on the resistance of nosocomial Pseudomonas aeruginosa to group 2 carbapenems (imipenem, meropenem, and doripenem). This was a retrospective, observational study conducted between 1 January 2000 and 31 January 2009 at a large, tertiary-care hospital. Autoregressive integrated moving average (ARIMA) regression models w...
متن کاملنقش ژن mexZ در مقاومت به سیپروفلوکساسین در جدایه های سودوموناس آئروژینوزا در استان گیلان
Messadi AA, Lamia T, Kamel B, Salima O, Monia M, Saida BR. Association between antibiotic use and changes in susceptibility patterns of Pseudomonas aeruginosa in an intensive care burn unit: a 5-year study, 2000-2004. Burns :J Int Soc Burn Injuries 2008;34(8):1098-102. Sherertz RJ, Sarubbi FA. A three-year study of nosocomial infections associated with Pseudomonas aeruginosa. J Clin Micr...
متن کاملAssociation between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review
Pseudomonas aeruginosa uses a complex type III secretion system to inject the toxins ExoS, ExoT, ExoU, and ExoY into the cytosol of target eukaryotic cells. This system is regulated by the exoenzyme S regulon and includes the transcriptional activator ExsA. Of the four toxins, ExoU is characterized as the major virulence factor responsible for alveolar epithelial injury in patients with P. aeru...
متن کامل