DNA and its counterions: a molecular dynamics study.

نویسندگان

  • Péter Várnai
  • Krystyna Zakrzewska
چکیده

The behaviour of mobile counterions, Na+ and K+, was analysed around a B-DNA double helix with the sequence CCATGCGCTGAC in aqueous solution during two 50 ns long molecular dynamics trajectories. The movement of both monovalent ions remains diffusive in the presence of DNA. Ions sample the complete space available during the simulation time, although individual ions sample only about one-third of the simulation box. Ions preferentially sample electronegative sites around DNA, but direct binding to DNA bases remains a rather rare event, with highest site occupancy values of <13%. The location of direct binding sites depends greatly on the nature of the counterion. While Na+ binding in both grooves is strongly sequence-dependent with the preferred binding site in the minor groove, K+ mainly visits the major groove and binds close to the centre of the oligomer. The electrostatic potential of an average DNA structure therefore cannot account for the ability of a site to bind a given cation; other factors must also play a role. An extensive analysis of the influence of counterions on DNA conformation showed no evidence of minor groove narrowing upon ion binding. A significant difference between the conformations of the double helix in the different simulations can be attributed to extensive alpha/gamma transitions in the phosphate backbone during the simulation with Na+. These transitions, with lifetimes over tens of nanoseconds, however, appear to be correlated with ion binding to phosphates. The ion-specific conformational properties of DNA, hitherto largely overlooked, may play an important role in DNA recognition and binding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structuring of counterions around dna double helix: a molecular dynamics study

Structuring of DNA counterions around the double helix has been studied by the molecular dynamics method. A DNA dodecamer d(CGCGAATTCGCG) in water solution with the alkali metal counterions Na, K, and Cs has been simulated. The systems have been considered in the regimes without excess salt and with different salts (0.5 M of NaCl, KCl or CsCl) added. The results have showed that the Na counteri...

متن کامل

Ion motions in molecular dynamics simulations on DNA.

Counterions play a significant role in DNA structure and function, and molecular dynamics (MD) simulations offer the prospect of detailed description of the dynamical structure of ions at the molecular level. However, the motions of mobile counterions are notably slow to converge in MD on DNA. Obtaining accurate and reliable MD simulations requires knowing just how much sampling is required for...

متن کامل

Molecular Simulations of DNA Counterion Distributions

One of the remarkable physical properties of a DNA molecule is that it is a strongly charged polyelectrolyte. In solution, DNA dissociates, forming a negatively charged polyion surrounded by an atmosphere of mobile, positively charged counterions. Although positive counterions are attracted to DNA, they screen the negative charge of DNA, decreasing the attractive force for other positive counte...

متن کامل

Salt Effect on Osmotic Pressure of Polyelectrolyte Solutions: Simulation Study

We present results of the hybrid Monte Carlo/molecular dynamics simulations of the osmotic pressure of salt solutions of polyelectrolytes. In our simulations, we used a coarse-grained representation of polyelectrolyte chains, counterions and salt ions. During simulation runs, we alternate Monte Carlo and molecular dynamics simulation steps. Monte Carlo steps were used to perform small ion excha...

متن کامل

A molecular dynamics simulation of double-helical B-DNA including counterions and water.

We present the results of an atomic level molecular dynamical simulation of a 5-base-pair fragment of double-helical DNA with inclusion of water and sodium counterions and a complete description of their electrostatic interactions. The shape of the double helix is preserved throughout the simulation, and the helix repeat is calculated to be 10.0, in reasonable agreement with experimental result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 32 14  شماره 

صفحات  -

تاریخ انتشار 2004