p53 Activation in adipocytes of obese mice.
نویسندگان
چکیده
The tumor suppressor p53 is a transcription factor that activates or represses its target genes after various genotoxic stresses. We have previously shown that sterol regulatory element-binding protein-1 (SREBP-1), a key transcriptional regulator of triglyceride synthesis, and the lipogenic enzymes under its control are markedly suppressed in adipocytes from genetically obese ob/ob mice. Here we demonstrate that p53 and its target genes are highly induced in adipocytes of ob/ob mice in a fed state, leading to the negative regulation of SREBP-1 and thereby lipogenic genes. In fact, disruption of p53 in ob/ob mice completely suppressed the p53-regulated genes to wild-type levels and partially restored expression of lipogenic enzymes. Consistently, reporter gene analysis showed that p53 overexpression suppressed the promoter activity of the SREBP-1c gene and its downstream genes. Thus, the activation of p53 might constitute a negative feedback loop against excess fat accumulation in adipocytes. In conclusion, we discovered a novel role of p53 in the pathophysiology of obesity.
منابع مشابه
Alterations in mRNA levels, expression, and function of GTP-binding regulatory proteins in adipocytes from obese mice (C57BL/6J-ob/ob).
Messenger RNA levels for the alpha subunit of G-proteins expressed in adipocytes of lean and obese (ob/ob) mice were compared with relative levels of the encoded proteins. Using both toxin labeling and Western blots, expression of Gs alpha, Gi alpha-1, and Gi alpha-3 was decreased by approximately 2-fold in adipocytes of obese mice, while levels of Gi alpha-2 did not differ between the phenotyp...
متن کاملOxidative Stress Regulates Adipocyte Apolipoprotein E and Suppresses Its Expression in Obesity
OBJECTIVE Endogenous expression of apolipoprotein E (apoE) has a significant impact on adipocyte lipid metabolism and is markedly suppressed in obesity. Adipose tissue oxidant stress is emerging as an important mediator of adipocyte dysfunction. These studies were undertaken to evaluate the role of oxidant stress for regulation of adipocyte apoE. RESEARCH DESIGN AND METHODS ApoE gene and prot...
متن کاملAssociation of some dietary intakes, anthropometric measurements and insulin resistance with the relative P53 gene expression in visceral and subcutaneous adipose tissue in obese, and non-obese subjects
Background and Objectives: The P53 is one of the genes involved in weight management. This study investigated associations of dietary intakes, anthropometric measurements and insulin resistance with relative P53 gene expressions. Materials & Methods: Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) were collected from 151 individuals, aging nearly 40 years, who underwent el...
متن کاملActivation of Adipose Tissue Macrophages in Obese Mice does not Require Lymphocytes
OBJECTIVE Macrophages which infiltrate adipose tissue and secrete proinflammatory cytokines may be responsible for obesity-induced insulin resistance. However, the reason why macrophages migrate into adipose tissue and become activated remains unknown though some studies suggest that this may be regulated by T and B lymphocytes. In this study, it has been tested whether T and B lymphocytes and ...
متن کاملAdipocytes from New Zealand Obese Mice Exhibit Aberrant Proinflammatory Reactivity to the Stress Signal Heat Shock Protein 60
Adipocytes release immune mediators that contribute to diabetes-associated inflammatory processes. As the stress protein heat shock protein 60 (Hsp60) induces proinflammatory adipocyte activities, we hypothesized that adipocytes of diabetes-predisposed mice exhibit an increased proinflammatory reactivity to Hsp60. Preadipocytes and mature adipocytes from nonobese diabetic (NOD), New Zealand obe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 28 شماره
صفحات -
تاریخ انتشار 2003