Conformation-dependent inactivation of human betaine-homocysteine S-methyltransferase by hydrogen peroxide in vitro.
نویسندگان
چکیده
Betaine-homocysteine S-methyltransferase (BHMT) transfers a methyl group from betaine to Hcy to form DMG (dimethylglycine) and Met. The reaction is ordered Bi Bi; Hcy is the first substrate to bind and Met is the last product off. Using intrinsic tryptophan fluorescence [Castro, Gratson, Evans, Jiracek, Collinsova, Ludwig and Garrow (2004) Biochemistry 43, 5341-5351], it was shown that BHMT exists in three steady-state conformations: enzyme alone, enzyme plus occupancy at the first substrate-binding site (Hcy or Met), or enzyme plus occupancy at both substrate-binding sites (Hcy plus betaine, or Hcy plus DMG). Betaine or DMG alone do not bind to the enzyme, indicating that the conformational change associated with Hcy binding creates the betaine-binding site. CBHcy [S-(d-carboxybutyl)-D,L-homocysteine] is a bisubstrate analogue that causes BHMT to adopt the same conformation as the ternary complexes. We report that BHMT is susceptible to conformation-dependent oxidative inactivation. Two oxidants, MMTS (methyl methanethiosulphonate) and hydrogen peroxide (H2O2), cause a loss of the enzyme's catalytic Zn (Zn2+ ion) and a correlative loss of activity. Addition of 2-mercaptoethanol and exogenous Zn after MMTS treatment restores activity, but oxidation due to H2O2 is irreversible. CD and glutaraldehyde cross-linking indicate that H2O2 treatment causes small perturbations in secondary structure but no change in quaternary structure. Oxidation is attenuated when both binding sites are occupied by CBHcy, but Met alone has no effect. Partial digestion of ligand-free BHMT with trypsin produces two large peptides, excising a seven-residue peptide within loop L2. CBHcy but not Met binding slows down proteolysis by trypsin. These findings suggest that L2 is involved in the conformational change associated with occupancy at the betaine-binding site and that this conformational change and/or occupancy at both ligand-binding sites protect the enzyme from oxidative inactivation.
منابع مشابه
Maternal Betaine Homocysteine Methyltransferase Gene Polymorphism as a Risk Factor for Trisomy
Disorder in re-methylation process of homocysteine to methionine due to mutation in betaine homocysteine methyltransferase enzyme (BHMT) coding gene, leads to decrease in S-adenosyl methionine (SAM) synthesis which takes part in DNA methylation as a methyl donor. As a result, it can promote hypo-methylation of DNA, chromosome instability, and chromosome missegregation, which in turn is one of t...
متن کاملDistribution of Homocysteine between Competing Pathways*
Using an in vitro system which contained enzymes, substrates, and other reactants at concentrations which approximated the in vivo conditions in rat liver, we measured the simultaneous product formation by three enzymes which utilize homocysteine. In the control system, 5-methyltetrahydrofolate homocysteine methyltransferase, betaine homocysteine methyltransferase, and cystathionine &synthase a...
متن کاملEffects of diabetes and insulin on betaine-homocysteine S-methyltransferase expression in rat liver.
Elevation of plasma homocysteine levels has been recognized as an independent risk factor for the development of cardiovascular disease, a major complication of diabetes. Plasma homocysteine reflects a balance between its synthesis via S-adenosyl-L-methionine-dependent methylation reactions and its removal through the transmethylation and the transsulfuration pathways. Betaine-homocysteine meth...
متن کاملMethionine metabolism in mammals. Distribution of homocysteine between competing pathways.
Using an in vitro system which contained enzymes, substrates, and other reactants at concentrations which approximated the in vivo conditions in rat liver, we measured the simultaneous product formation by three enzymes which utilize homocysteine. In the control system, 5-methyltetrahydrofolate homocysteine methyltransferase, betaine homocysteine methyltransferase, and cystathionine beta-syntha...
متن کاملSuppression Effects of Betaine-Enriched Spinach on Hyperhomocysteinemia Induced by Guanidinoacetic Acid and Choline Deficiency in Rats
Betaine is an important natural component of rich food sources, especially spinach. Rats were fed diets with betaine or spinach powder at the same level of betaine for 10 days to investigate the dose-dependent effects of spinach powder supplementation on hyperhomocysteinemia induced by guanidinoacetic acid (GAA) addition and choline deprivation. The GAA-induced hyperhomocysteinemia in rats fed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 392 Pt 3 شماره
صفحات -
تاریخ انتشار 2005