ATP-sensitive K+ channel knockout compromises the metabolic benefit of exercise training, resulting in cardiac deficits.
نویسندگان
چکیده
Exercise training elicits a metabolic and cardiovascular response that underlies fitness. The molecular mechanisms that orchestrate this adaptive response and secure the wide-ranging gains of a regimented exercise program are poorly understood. Formed through association of the Kir6.2 pore and the sulfonylurea receptor, the stress-responsive ATP-sensitive K(+) channels (K(ATP) channels), with their metabolic-sensing capability and broad tissue expression, are potential candidates for integrating the systemic adaptive response to repetitive exercise. Here, the responses of mice lacking functional Kir6.2-containing K(ATP) channels (Kir6.2-KO) were compared with wild-type controls following a 28-day endurance swimming protocol. While chronic aquatic training resulted in lighter, leaner, and fitter wild-type animals, the Kir6.2-KO manifested less augmentation in exercise capacity and lacked metabolic improvement in body fat composition and glycemic handling with myocellular defects. Moreover, the repetitive stress of swimming unmasked a survival disadvantage in the Kir6.2-KO, associated with pathologic calcium-dependent structural damage in the heart and impaired cardiac performance. Thus, Kir6.2-containing K(ATP) channel activity is required for attainment of the physiologic benefits of exercise training without injury.
منابع مشابه
Exercise preconditioning: review
It is estimated that by 2035, more than 130 million adults will suffer from various types of cardiovascular diseases. Therefore, it is very important to know the pathogens of cardiac diseases and investigate new treatments. Also, despite continuous progress in diagnosis, patient education, and risk factor management, myocardial infarction (MI) remains one of the most common causes of morbidity,...
متن کاملEffect of ATP-Dependent K+ Channel Openers and Blockers on Serum Concentration of Aldosterone in Rats
There are many reports for involvement of ATP-sensitive potassium channels in pancreatic, cardiac and vascular smooth muscle cells. This study examined the effect of single doses of K+ channel openers diazoxide, minoxidil and K+ channel blockers chlorpropamide, glibenclamide on serum concentration of aldosterone in male rats. Blood samples were obtained 60 minutes after drug treatment and serum...
متن کاملKATP channel knockout worsens myocardial calcium stress load in vivo and impairs recovery in stunned heart.
Gene knockout of the KCNJ11-encoded Kir6.2 ATP-sensitive K(+) (K(ATP)) channel implicates this stress-response element in the safeguard of cardiac homeostasis under imposed demand. K(ATP) channels are abundant in ventricular sarcolemma, where subunit expression appears to vary between the sexes. A limitation, however, in establishing the full significance of K(ATP) channels in the intact organi...
متن کاملMechanical Dyssynchrony Precedes QRS Widening in ATP‐Sensitive K+ Channel–Deficient Dilated Cardiomyopathy
BACKGROUND Contractile discordance exacerbates cardiac dysfunction, aggravating heart failure outcome. Dissecting the genesis of mechanical dyssynchrony would enable an early diagnosis before advanced disease. METHODS AND RESULTS High-resolution speckle-tracking echocardiography was applied in a knockout murine surrogate of adult-onset human cardiomyopathy caused by mutations in cardioprotect...
متن کاملEvidences on the existence of a new potassium channel in the rough endoplasmic reticulum (RER) of rat hepatocytes
Introduction: we have recently reported the presence of two potassium currents with 598 and 368 pS conductance in the rough endoplasmic reticulum (RER) membrane. The 598 pS channel was voltage dependent and ATP sensitive. However, the 368 pS channel was rarely observed and its identity remained obscure. Since cationic channels in intracellular organelles such as mitochondria and RER play imp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 53 Suppl 3 شماره
صفحات -
تاریخ انتشار 2004