Unitary N-dilations for Tuples of Commuting Matrices

نویسندگان

  • JOHN E. MCCARTHY
  • MOSHE SHALIT
چکیده

We show that whenever a contractive k-tuple T on a finite dimensional space H has a unitary dilation, then for any fixed degree N there is a unitary k-tuple U on a finite dimensional space so that q(T ) = PHq(U)|H for all polynomials q of degree at most N .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Standard dilations of q-commuting tuples

Here we study dilations of q-commuting tuples. In [BBD] the authors gave the correspondence between the two standard dilations of commuting tuples and here these results have been extended to q-commuting tuples. We are able to do this when q-coefficients ‘qij ’ are of modulus one. We introduce ‘maximal q-commuting subspace ’ of a n-tuple of operators and ‘standard q-commuting dilation’. Our mai...

متن کامل

Standard Models under Polynomial Positivity Conditions

We develop standard models for commuting tuples of bounded linear operators on a Hilbert space under certain polynomial positivity conditions, generalizing the work of V. Müller and F.-H. Vasilescu in [6], [14]. As a consequence of the model, we prove a von Neumann-type inequality for such tuples. Up to similarity, we obtain the existence of in a certain sense “unitary” dilations.

متن کامل

Commutant lifting theorem for n-tuples of contractions

We show that the commutant lifting theorem for n-tuples of commuting contractions with regular dilations fails to be true. A positive answer is given for operators which ”double intertwine” given n-tuples of contractions. The commutant lifting theorem is one of the most important results of the Sz. Nagy—Foias dilation theory. It is usually stated in the following way: Theorem. Let T and T ′ be ...

متن کامل

Contractive Hilbert Modules and Their Dilations over Natural Function Algebras

In this note, we show that quasi-free Hilbert modules R defined over natural function algebras satisfying a certain positivity condition, defined via the hereditary functional calculus, admit a dilation (actually a co-extension) to the Hardy module over the polydisk. An explicit realization of the dilation space is given along with the isometric embedding of the module R in it. Some consequence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012