Distribution of intersection lengths of a random geodesic with a geodesic lamination
نویسندگان
چکیده
We investigate the distribution of lengths obtained by intersecting a random geodesic with a geodesic lamination. We give an explicit formula for the distribution for the case of a maximal lamination and show that the distribution is independent of the surface and lamination. We also show how the moments of the distribution are related to the Riemann zeta function.
منابع مشابه
ENTROPY OF GEODESIC FLOWS ON SUBSPACES OF HECKE SURFACE WITH ARITHMETIC CODE
There are dierent ways to code the geodesic flows on surfaces with negative curvature. Such code spaces give a useful tool to verify the dynamical properties of geodesic flows. Here we consider special subspaces of geodesic flows on Hecke surface whose arithmetic codings varies on a set with innite alphabet. Then we will compare the topological complexity of them by computing their topological ...
متن کاملTwo-geodesic transitive graphs of prime power order
In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...
متن کامل3D Face Recognition using Patch Geodesic Derivative Pattern
In this paper, a novel Patch Geodesic Derivative Pattern (PGDP) describing the texture map of a face through its shape data is proposed. Geodesic adjusted textures are encoded into derivative patterns for similarity measurement between two 3D images with different pose and expression variations. An extensive experimental investigation is conducted using the publicly available Bosphorus and BU-3...
متن کاملA Schläfli-type Formula for Convex Cores of Hyperbolic 3–manifolds
Let M be a (connected) hyperbolic 3–manifold, namely a complete Riemannian manifold of dimension 3 and of constant sectional curvature −1, with finitely generated fundamental group. A fundamental subset of M is its convex core CM , which is the smallest non-empty convex subset of M . The condition that the volume of CM is finite is open in the space of hyperbolic metrics on M , provided we rest...
متن کاملAssessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation
Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...
متن کامل