On the Conditional Small Ball Property of Multivariate Lévy-driven Moving Average Processes

نویسنده

  • MIKKO S. PAKKANEN
چکیده

We study whether a multivariate Lévy-driven moving average process can shadow arbitrarily closely any continuous path, starting from the present value of the process, with positive conditional probability, which we call the conditional small ball property. Our main results establish the conditional small ball property for Lévy-driven moving average processes under natural non-degeneracy conditions on the kernel function of the process and on the driving Lévy process. We discuss in depth how to verify these conditions in practice. As concrete examples, to which our results apply, we consider fractional Lévy processes and multivariate Lévy-driven Ornstein–Uhlenbeck processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tail Behavior of Multivariate Lévy-Driven Mixed Moving Average Processes and supOU Stochastic Volatility Models

Multivariate Lévy-driven mixed moving average (MMA) processes of the type Xt = ∫ ∫ f(A, t − s)Λ(dA, ds) cover a wide range of well known and extensively used processes such as Ornstein-Uhlenbeck processes, superpositions of Ornstein-Uhlenbeck (supOU) processes, (fractionally integrated) CARMA processes and increments of fractional Lévy processes. In this paper, we introduce multivariate MMA pro...

متن کامل

Functional Regular Variation of Lévy-driven Multivariate Mixed Moving Average Processes

We consider the functional regular variation in the space D of càdlàg functions of multivariate mixed moving average (MMA) processes of the type Xt = ∫ ∫ f(A, t− s)Λ(dA, ds). We give sufficient conditions for an MMA process (Xt) to have càdlàg sample paths. As our main result, we prove that (Xt) is regularly varying in D if the driving Lévy basis is regularly varying and the kernel function f s...

متن کامل

Spectral Representation of Multivariate Regularly Varying Lévy and CARMA Processes

A spectral representation for regularly varying Lévy processes with index between one and two is established and the properties of the resulting random noise are discussed in detail giving also new insight in the L2-case where the noise is a random orthogonal measure. This allows a spectral definition of multivariate regularly varying Lévy-driven continuous time autoregressive moving average (C...

متن کامل

A central limit theorem for the sample autocorrelations of a Lévy driven continuous time moving average process

In this article we consider Lévy driven continuous time moving average processes observed on a lattice, which are stationary time series. We show asymptotic normality of the sample mean, the sample autocovariances and the sample autocorrelations. A comparison with the classical setting of discrete moving average time series shows that in the last case a correction term should be added to the cl...

متن کامل

Quasi maximum likelihood estimation for strongly mixing state space models and multivariate Lévy-driven CARMA processes

We consider quasi maximum likelihood (QML) estimation for general non-Gaussian discrete-time linear state space models and equidistantly observed multivariate Lévy-driven continuous-time autoregressive moving average (MCARMA) processes. In the discrete-time setting, we prove strong consistency and asymptotic normality of the QML estimator under standard moment assumptions and a strong-mixing co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016