Phase-II Clinical Validation of a Powered Exoskeleton for the Treatment of Elbow Spasticity

نویسندگان

  • Simona Crea
  • Marco Cempini
  • Stefano Mazzoleni
  • Maria Chiara Carrozza
  • Federico Posteraro
  • Nicola Vitiello
چکیده

Introduction: Spasticity is a typical motor disorder in patients affected by stroke. Typically post-stroke rehabilitation consists of repetition of mobilization exercises on impaired limbs, aimed to reduce muscle hypertonia and mitigate spastic reflexes. It is currently strongly debated if the treatment's effectiveness improves with the timeliness of its adoption; in particular, starting intensive rehabilitation as close as possible to the stroke event may counteract the growth and postpone the onset of spasticity. In this paper we present a phase-II clinical validation of a robotic exoskeleton in treating subacute post-stroke patients. Methods: Seventeen post-stroke patients participated in 10 daily rehabilitation sessions using the NEUROExos Elbow Module exoskeleton, each one lasting 45 min: the exercises consisted of isokinetic passive mobilization of the elbow, with torque threshold to detect excessive user's resistance to the movement. We investigated the safety by reporting possible adverse events, such as mechanical, electrical or software failures of the device or injuries or pain experienced by the patient. As regards the efficacy, the Modified Ashworth Scale, was identified as primary outcome measure and the NEEM metrics describing elbow joint resistance to passive extension (i.e., maximum extension torque and zero-torque angle) as secondary outcomes. Results: During the entire duration of the treatments no failures or adverse events for the patients were reported. No statistically significant differences were found in the Modified Ashworth Scale scores, between pre-treatment and post-treatment and between post-treatment and follow-up sessions, indicating the absence of spasticity increase throughout (14 days) and after (3-4 months follow-up) the treatment. Exoskeleton metrics confirmed the absence of significant difference in between pre- and post-treatment data, whereas intra-session data highlighted significant differences in the secondary outcomes, toward a decrease of the subject's joint resistance. Conclusions: The results show that our robotic exoskeleton can be safely used for prolonged sessions in post-stroke and suggest that intensive early rehabilitation treatment may prevent the occurrence of spasticity at a later stage. Moreover, the NEEM metrics were found to be reliable compared to the Modified Ashworth Scale and sensitive to revealing intra-session changes of elbow resistance to passive extension, in agreement with clinical evidences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis

BACKGROUND Powered exoskeletons are designed to safely facilitate ambulation in patients with spinal cord injury (SCI). We conducted the first meta-analysis of the available published research on the clinical effectiveness and safety of powered exoskeletons in SCI patients. METHODS MEDLINE and EMBASE databases were searched for studies of powered exoskeleton-assisted walking in patients with ...

متن کامل

Spasticity: A review of Methods for Assessment and Treatment

Spasticity is the condition resulting of corticispinal damage as occurs in some neurological diseases. The aim of the article is to review the literature on assessment and treatment of spasticity and spastic limbs. The assessment and treatment methods are studied the study involves different method of mangement of spastic limbs in depth. Different method of evaluation of spasticity, including b...

متن کامل

A myosignal-based powered exoskeleton system

Integrating humans and robotic machines into one system offers multiple opportunities for creating assistive technologies that can be used in biomedical, industrial, and aerospace applications. The scope of the present research is to study the integration of a human arm with a powered exoskeleton (orthotic device) and its experimental implementation in an elbow joint, naturally controlled by th...

متن کامل

Performances of Hill-Type and Neural Network Muscle Models - Toward a Myosignal-Based Exoskeleton

Muscle models are the essential components of any musculoskeletal simulation. In addition, muscle models which are incorporated in neural-based prosthetic and orthotic devices may significantly improve their performance. The aim of the study was to compare the performances of two types of muscle models in terms of predicting the moments developed at the human elbow joint complex based on joint ...

متن کامل

Design of High Torque Elbow Joint for Above Elbow Prosthesis

Above Elbow Prosthesis is one of the most commonly amputated or missing limbs. The research is done for modelling techniques of upper limb prosthesis and design of high torque, light weight and compact in size elbow actuator. The purposed actuator consists of a DC motor, planetary gear set and a harmonic drive. The calculations show that the actuator is good enough to be used in real life power...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017