Osmolarity and pH growth conditions regulate fim gene transcription and type 1 pilus expression in uropathogenic Escherichia coli.

نویسندگان

  • William R Schwan
  • Jeffrey L Lee
  • Farrah A Lenard
  • Brian T Matthews
  • Michael T Beck
چکیده

A comparative study was performed to determine the effects of pH, osmolarity, and human urine on the transcription of several fim genes, as well as the overall expression of type 1 pili. Several fim-lacZYA fusions were constructed on single-copy plasmids to test a range of pHs and a range of osmolarities. Growth in acidic medium slightly reduced expression from all of the fim promoters (fimA, fimB, and fimE). Increased osmolarity in neutral-pH medium repressed fimA and fimB transcription by approximately 50% when 400 mM NaCl was used and nearly threefold when 800 mM NaCl was used, whereas fimE transcription rose slightly as the osmolarity increased. This effect was more pronounced in high-osmolarity acidic media; fimB and fimA expression decreased fivefold in growth media containing 800 mM NaCl compared to expression in growth media without added NaCl. Moreover, fimE expression doubled under the same high-osmolarity conditions compared to expression in a low-osmolarity acidic environment. When a fimB-lacZ or fimE-lacZ fusion was inserted into the chromosome of strain AAEC189, fimE expression changed slightly as the osmolarity increased, but fimB expression decreased by 50% in a low-pH high-osmolarity environment. When strain AAEC189 with either a plasmid-borne fimB-lacZ fusion or a plasmid-borne fimE-lacZ fusion was grown in human urine, similar changes in the levels of fimB and fimE expression were observed. Limiting-dilution reverse transcription-PCR confirmed that these changes in fim expression occurred in clinical isolates of uropathogenic Escherichia coli grown in media with different pHs and different osmolarities. Furthermore, the invertible switch region in uropathogenic strain NU149 shifted from favoring the phase-on position in a neutral-pH low-osmolarity environment to favoring the phase-off position in a low-pH high-osmolarity environment. Results obtained with an ompR mutant strain demonstrated that fimB expression was derepressed and that OmpR may neutralize repression by an acid response regulator of fimE expression in a low-pH environment. In addition, H-NS was verified to be important in regulation of fimB, but it had only a slight effect on fimE under the specific pH and osmotic growth conditions tested. Enzyme immunoassays with anti-type 1 pilus antibody and hemagglutination assays showed that fewer type 1 pili were detected with cells in a low-pH high-osmolarity environment. Together, these observations demonstrate that a combination of low pH and high osmolarity regulates the transcription of fim genes, which favors a shift in the invertible element to the phase-off orientation and a loss of type 1 pilus expression. Taken together, our data suggest that the environmental cues that we tested may regulate expression of type 1 pili in specific in vivo niches, such as murine kidneys and possibly human kidneys.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Study of Phase Variation of Type 1 Fimbriae in Uropathogenic Escherichia coli O44 Serotypes during Touching with Solid Surfaces

Background & Aims: Type 1 fimbriae is the most common adhesion factor in urine tract infection. In this Study, presence of virulence genes in isolated strains of uropathogenic E.Coli, O serotyping and molecular detection of phase variation of type 1 fimbriae were assessed during solid surfaces exposure. Methods: Isolated E.coli from urine samples of patients were serotyped by using serologic me...

متن کامل

Multiple genes repress motility in uropathogenic Escherichia coli constitutively expressing type 1 fimbriae.

Two surface organelles of uropathogenic Escherichia coli (UPEC), flagella and type 1 fimbriae, are critical for colonization of the urinary tract but mediate opposite actions. Flagella propel bacteria through urine and along mucus layers, while type 1 fimbriae allow bacteria to adhere to specific receptors present on uroepithelial cells. Constitutive expression of type 1 fimbriae leads to repre...

متن کامل

Impact of Various Environmental and Growth Conditions on Antigen 43 Gene Expression and Biofilm Formation by Uropathogenic Echserchia coli

ABSTRACT         Background and Objectives: Biofilm is a population of bacteria growing on a surface and enclosed in an exopolysaccharides matrix, which increases resistance to antimicrobial agents and immune response. Uropathogenic Escherichia coli (UPEC) are biofilm-forming bacteria and the most common cause of urinary tract infections (UTIs). This study ev...

متن کامل

THE EFFECT OF ENVIRONMENTAL CONDITIONS ON THE REGULATION OF fimB INVOLVED IN TYPE 1 PILUS EXPRESSION

The bacterial species Escherichia coli causes most urinary tract infections. Adherence to bladder cells via thin appendages called pili are important in causing these infections. One variety of pili is type 1 pili that can undergo phase variation, allowing the bacteria to switch between piliated and nonpiliated states. Phase variation involves several genes, which include fimA, that encodes for...

متن کامل

Detection of fim, pap, sfa and afa Adhesin-Encoding Operons in Escherichia coli Strains Isolated from Urinary Tract Infections

ABSTRACT              Background and objectives: Urinary tract infections (UTIs) are one of the most common infectious diseases caused by bacteria. The primary etiologic agent of UTIs is Escherichia coli. Uropathogenic E.coli (UPEC) strains have a number of specific virulence factors, which can worsen UTIs. This study was performed to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 70 3  شماره 

صفحات  -

تاریخ انتشار 2002