The Real Holomorphy Ring and Sums of Powers in Rational and Elliptic Function Fields over The Field of Real Numbers

نویسندگان

  • Eberhard Becker
  • Berhanu Bekele
چکیده

This thesis is devoted to a study of real holomorphy rings in R(x) and elliptic function fields R(x)( √ f(x)), f is a monic polynomial of degree 3 with no multiple roots in C over R and sums of powers in R(x). The objects of study are real valuation rings, real holomorphy rings and real places in the rational function fields R(x) and then investigate their extension to elliptic function fields which are quadratic extension of R(x). We write down the full list of real valuation rings to give the description of holomorphy ring in both fields and finally we study applications to sums of powers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Reduced Witt Ring of a Formally

The reduced Witt rings of certain formally real fields are computed here in terms of some basic arithmetic invariants of the fields. For some fields, including the rational function field in one variable over the rational numbers and the rational function field in two variables over the real numbers, this is done by computing the image of the total signature map on the Witt ring. For a wider cl...

متن کامل

HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC

Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

Complete characterization of the Mordell-Weil group of some families of elliptic curves

 The Mordell-Weil theorem states that the group of rational points‎ ‎on an elliptic curve over the rational numbers is a finitely‎ ‎generated abelian group‎. ‎In our previous paper, H‎. ‎Daghigh‎, ‎and S‎. ‎Didari‎, On the elliptic curves of the form $ y^2=x^3-3px$‎, ‎‎Bull‎. ‎Iranian Math‎. ‎Soc‎.‎‎ 40 (2014)‎, no‎. ‎5‎, ‎1119--1133‎.‎, ‎using Selmer groups‎, ‎we have shown that for a prime $p...

متن کامل

On the diameter of the commuting graph of the full matrix ring over the real numbers

‎In a recent paper C‎. ‎Miguel proved that the diameter of the commuting graph of the matrix ring $mathrm{M}_n(mathbb{R})$ is equal to $4$ if either $n=3$ or $ngeq5$‎. ‎But the case $n=4$ remained open‎, ‎since the diameter could be $4$ or $5$‎. ‎In this work we close the problem showing that also in this case the diameter is $4$.

متن کامل

Efficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields

This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017