Phenol‐Catalyzed Discharge in the Aprotic Lithium‐Oxygen Battery
نویسندگان
چکیده
Discharge in the lithium-O2 battery is known to occur either by a solution mechanism, which enables high capacity and rates, or a surface mechanism, which passivates the electrode surface and limits performance. The development of strategies to promote solution-phase discharge in stable electrolyte solutions is a central challenge for development of the lithium-O2 battery. Here we show that the introduction of the protic additive phenol to ethers can promote a solution-phase discharge mechanism. Phenol acts as a phase-transfer catalyst, dissolving the product Li2 O2 , avoiding electrode passivation and forming large particles of Li2 O2 product-vital requirements for high performance. As a result, we demonstrate capacities of over 9 mAh cm-2areal , which is a 35-fold increase in capacity compared to without phenol. We show that the critical requirement is the strength of the conjugate base such that an equilibrium exists between protonation of the base and protonation of Li2 O2 .
منابع مشابه
Proton enhanced dynamic battery chemistry for aprotic lithium–oxygen batteries
Water contamination is generally considered to be detrimental to the performance of aprotic lithium-air batteries, whereas this view is challenged by recent contrasting observations. This has provoked a range of discussions on the role of water and its impact on batteries. In this work, a distinct battery chemistry that prevails in water-contaminated aprotic lithium-oxygen batteries is revealed...
متن کاملCommunications: Elementary oxygen electrode reactions in the aprotic Li-air battery.
We discuss the electrochemical reactions at the oxygen electrode of an aprotic Li-air battery. Using density functional theory to estimate the free energy of intermediates during the discharge and charge of the battery, we introduce a reaction free energy diagram and identify possible origins of the overpotential for both processes. We also address the question of electron conductivity through ...
متن کاملNumerical investigation of the parameters of a prismatic lithium ion battery under load for electrical vehicle
Electric vehicles and hybrid electric vehicles are a suitable alternative for vehicles with hydrocarbons fuels to reduce pollution and fossil resources. The batteries operate as the driving force for these vehicles. One of the most critical parameters of the battery is computing the state of charge (SOC). The best range for SOC of lithium-ion battery is between 20% and 90%, and charging and dis...
متن کاملCritical Descriptor for the Rational Design of Oxide-Based Catalysts in Rechargeable Li–O2 Batteries: Surface Oxygen Density
Li−O2 batteries provide high-capacity energy storage, but for aprotic Li−O2 batteries, it is reported that the charge−discharge efficiency is ultimately limited by the crystal growth of insoluble Li2O2 on the porous cathode. Catalysts have been reported to improve the nucleation and morphology of Li2O2, which helps achieve high energy densities. We provide a new insight into the catalytic mecha...
متن کاملStudying lithium-ion battery packs cooling system using water-nanofluids composition
In this study, the Li-ion batteries temperature increase during the discharge process was measured empirically and evaluated using numerical simulation. Moreover, the battery packs cooling using the water, air and water-nano composition fluids such as water-alumina, water-copper oxide, and water-gold was studied through numerical simulation. Accordingly, the battery cooling was simulated by CFD...
متن کامل