Fractional hydrodynamic equations for fractal media

نویسنده

  • Vasily E. Tarasov
چکیده

We use the fractional integrals in order to describe dynamical processes in the fractal medium. We consider the ‘‘fractional’’ continuous medium model for the fractal media and derive the fractional generalization of the equations of balance of mass density, momentum density, and internal energy. The fractional generalization of Navier–Stokes and Euler equations are considered. We derive the equilibrium equation for fractal media. The sound waves in the continuous medium model for fractional media are considered. 2005 Elsevier Inc. All rights reserved. PACS: 03.40.Gc; 47.10.+g; 47.53.+n

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On spherically symmetrical accretion in fractal media

We use fractional integrals to generalize the description of hydrodynamic accretion in fractal media. The fractional continuous medium model allows the generalization of the equations of balance of mass density and momentum density. These make it possible to consider the general case of spherical hydrodynamic accretion onto a gravitating mass embedded in a fractal medium. The general nature of ...

متن کامل

Fractional Fokker-Planck equation for fractal media.

We consider the fractional generalizations of equation that defines the medium mass. We prove that the fractional integrals can be used to describe the media with noninteger mass dimensions. Using fractional integrals, we derive the fractional generalization of the Chapman-Kolmogorov equation (Smolukhovski equation). In this paper fractional Fokker-Planck equation for fractal media is derived f...

متن کامل

Local Fractional Homotopy Perturbation Method for Solving Non-Homogeneous Heat Conduction Equations in Fractal Domains

In this article, the local fractional Homotopy perturbation method is utilized to solve the non-homogeneous heat conduction equations. The operator is considered in the sense of the local fractional differential operator. Comparative results between non-homogeneous and homogeneous heat conduction equations are presented. The obtained result shows the non-differentiable behavior of heat conducti...

متن کامل

Fractal solids, product measures and fractional wave equations

This paper builds on the recently begun extension of continuum thermomechanics to fractal porous media that are specified by a mass (or spatial) fractal dimension D, a surface fractal dimension d and a resolution length scale R. The focus is on pre-fractal media (i.e. those with lower and upper cut-offs) through a theory based on a dimensional regularization, in which D is also the order of fra...

متن کامل

A Fractional Calculus Approach to the Mechanics of Fractal Media

Based on the experimental observation of the size effects on the structural behavior of heterogeneous material specimens, the fractal features of the microstructure of such materials is rationally described. Once the fractal geometry of the microstructure is set, we can define the quantities characterizing the failure process of a disordered material (i.e. a fractal medium). These quantities sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005