β Sheets Not Required: Combined Experimental and Computational Studies of Self-Assembly and Gelation of the Ester-Containing Analogue of an Fmoc-Dipeptide Hydrogelator
نویسندگان
چکیده
In our work toward developing ester-containing self-assembling peptides as soft biomaterials, we have found that a fluorenylmethoxycarbonyl (Fmoc)-conjugated alanine-lactic acid (Ala-Lac) sequence self-assembles into nanostructures that gel in water. This process occurs despite Fmoc-Ala-Lac's inability to interact with other Fmoc-Ala-Lac molecules via β-sheet-like amide-amide hydrogen bonding, a condition previously thought to be crucial to the self-assembly of Fmoc-conjugated peptides. Experimental comparisons of Fmoc-Ala-Lac to its self-assembling peptide sequence analogue Fmoc-Ala-Ala using a variety of microscopic, spectroscopic, and bulk characterization techniques demonstrate distinct features of the two systems and show that while angstrom-scale self-assembled structures are similar, their nanometer-scale size and morphological properties diverge and give rise to different bulk mechanical properties. Molecular dynamics simulations were performed to gain more insight into the differences between the two systems. An analysis of the hydrogen-bonding and solvent-surface interface properties of the simulated fibrils revealed that Fmoc-Ala-Lac fibrils are stronger and less hydrophilic than Fmoc-Ala-Ala fibrils. We propose that this difference in fibril amphiphilicity gives rise to differences in the higher-order assembly of fibrils into nanostructures seen in TEM. Importantly, we confirm experimentally that β-sheet-type hydrogen bonding is not crucial to the self-assembly of short, conjugated peptides, and we demonstrate computationally that the amide bond in such systems may act mainly to mediate the solvation of the self-assembled single fibrils and therefore regulate a more extensive higher-order aggregation of fibrils. This work provides a basic understanding for future research in designing highly degradable self-assembling materials with peptide-like bioactivity for biomedical applications.
منابع مشابه
Tuning the self-assembly of the bioactive dipeptide L-carnosine by incorporation of a bulky aromatic substituent.
The dipeptide L-carnosine has a number of important biological properties. Here, we explore the effect of attachment of a bulky hydrophobic aromatic unit, Fmoc [N-(fluorenyl-9-methoxycarbonyl)] on the self-assembly of Fmoc-L-carnosine, i.e., Fmoc-β-alanine-histidine (Fmoc-βAH). It is shown that Fmoc-βAH forms well-defined amyloid fibrils containing β sheets above a critical aggregation concentr...
متن کاملExperimental and computational studies reveal an alternative supramolecular structure for fmoc-dipeptide self-assembly.
We have investigated the self-assembly of fluorenylmethoxycarbonyl-conjugated dialanine (Fmoc-AA) molecules using combined computational and experimental approaches. Fmoc-AA gels were characterized using transmission electron microscopy (TEM), circular dichroism (CD), Fourier transform infrared (FTIR), and wide-angle X-ray scattering (WAXS). Computationally, we simulated the assembly of Fmoc-AA...
متن کاملCharge and sequence effects on the self-assembly and subsequent hydrogelation of Fmoc-depsipeptides.
Herein we report on the self-assembly of a family of Fmoc-depsipeptides into nanofibers and hydrogels. We show that fiber formation occurs in depsipeptide structures in which the fluorenyl group is closely associated and that side-chain charge and sequence affect the extent of self-assembly and subsequent gelation. Using fluorescence emission spectroscopy and circular dichroism, we show that se...
متن کاملAn additional fluorenylmethoxycarbonyl (Fmoc) moiety in di-Fmoc-functionalized L-lysine induces pH-controlled ambidextrous gelation with significant advantages.
In recent years, several fluorenylmethoxycarbonyl (Fmoc)-functionalized amino acids and peptides have been used to construct hydrogels, which find a wide range of applications. Although several hydrogels have been prepared from mono Fmoc-functionalized amino acids, herein, we demonstrate the importance of an additional Fmoc-moiety in the hydrogelation of double Fmoc-functionalized L-lysine [Fmo...
متن کاملMicrowave-assisted Solid-phase(SPPS) and Solution-phase (SPS) Synthesis of Biological Dipeptide ((β-alanine-L histidine)
Peptides have shown Promising effect as pharmaceutics with the potential to treat a widevariety of diseases. Peptides are mostly synthesized by biological technology or chemicalmethods. Solution phasepeptide synthesis (SPS) and solid phase peptide synthesis (SPPS) aretwo major chemical techniques for peptidesproduction.In this research, the synthesis ofdipeptde(β-alanine-L-histidine)wasexamined...
متن کامل